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SUMMARY

Anemia is the most common disorder globally and one of the conditions that general practitioners
most frequently encounter. Human erythrocytes, also known as red blood cells, or RBC, are exposed to
constant stress while they circulate in the blood (e.g. shear stress, osmotic stress, oxidative stress). The
scope of this review was to analyze the literature data on what the hormonal receptors do on mature
erythrocytes and how they relate to the risk of anemia.

We investigated the literature data in the most recent five-year period (PubMed, Google Schoolar) and
analyzed the effects of hormonal receptors on four specific characteristics of mature erythrocytes: osmotic
resistance, deformability/rheology, erythrocyte hemoglobin affinity to oxygen and eryptosis.

We found that the hormones have a strong impact in regulating erythrocyte survival and functionality.
These receptors increase the physiological plasticity of mature erythrocytes and serve as the effective
tool for deeper effects of integral regulatory mechanisms that promote their survival and whole-body
homeostasis. Additionally, these hormonal receptors are closely associated with the risk of anemia:
when the supportive function of hormones and their receptors is not effective, eryptosis increases and,
consequently, the number of mature erythrocytes in the circulation decreases.
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INTRODUCTION

Erythrocytes are the most numerous
blood and body cells

Human erythrocytes, also known as red blood
cells, RBC, are organelle-free cells packaged
with hemoglobin that are specialized for oxy-
gen transport. With an estimated total number
of 25 trillion cells per person, erythrocyte is the
most numerous cell type not only in blood but
in the entire organism [1, 2].

Anemia is a condition in which the number
of erythrocytes or their oxygen-carrying capac-
ity is insufficient to meet physiological needs
[1, 3]. It is one of the most widespread disor-
ders worldwide and among the conditions most
commonly encountered by general practitio-
ners. According to World Health Organization
global database, anemia affected approximately
1.76 billion individuals worldwide in 2019 [3].

Additional overlooked erythrocyte
functions

Our understanding of erythrocytes as a simple
“bag” that contains hemoglobin and performs

its essential task as an oxygen shuttle has
dramatically evolved. Over the past several
decades, the efforts of cell and molecular bi-
ologists, physiologists, biochemists, and hema-
tologists have contributed to our better under-
standing of the complexity of the erythrocyte
structure and revealed that erythrocytes can
also perform the following: serve as sink for
exogenous RNA [4]; play a significant role in
the immunometabolic interactions that control
immunity [5]; contain an important pool of the
bioactive gas — nitric oxide [6]; play a role in
water- [7] and reverse cholesterol-transport [8];
and can be used as a drug carrier (pharmaceuti-
cal uses) [9].

Additionally, it is postulated that in regions
of low pO,, the mobile erythrocytes also serve
as oxygen sensors and modulators of vascular
tone, since they have the ability to match mi-
crovascular oxygen supply with tissue oxygen
demand, by releasing ATP [10]. It is amazing
how many essential complex physiological
functions are provided by erythrocytes. An
impressive number!
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Erythrocytes are constantly subjected to multiple
stresses while circulating in the bloodstream

While travelling through rapid, dynamic, and quickly
changeable circulatory system, erythrocytes face many
challenging conditions and locations [1, 11]. Firstly, with
each passage through the renal medulla, erythrocytes are
exposed to the osmotic stress/shock, since they undergo
significant changes in their hyperosmotic environment,
reaching levels as high as 1200 mOsmol/L [12]. Secondly,
mature erythrocytes endure the shear stress (mechanical
deformation of the membrane) while passing through tight
capillaries and sinusoids [13]. Thirdly, when in the lungs,
they also face oxidative stress due to the elevated oxygen
pressure [11]. Furthermore, during inflammation, whether
it is systemic or chronic, erythrocytes are constantly ex-
posed to circulating inflammatory mediators [14].

Consequently, all of these multiple stresses can result in
molecular and structural damage of erythrocytes, ultimate-
ly leading to their degradation and quick removal from
circulation. A rapid and severe reduction in erythrocyte
levels results in the development of hemolytic anemia [1].

Even though erythrocytes are constantly subjected to
multiple stresses, they lack the ability to replenish proteins
that have lost their function, since they have lost all of their
organelles by the time they mature [1, 15].

Altogether, due to all of these difficulties, erythrocytes
are highly vulnerable and sensitive cells that require vari-
ous defense mechanisms to support their viability and
avert their premature clearance [15, 16].

The intimate relationship between erythrocytes
and the endocrine system

Numerous clinical and experimental observations have
confirmed that there is a close connection between the
rate of hematopoiesis and endocrine hormones, as evi-
denced by changes in bone marrow and peripheral blood
components [17, 18, 19]. For instance, hypothyroidism is
related to anemia and an underactive marrow, while hy-
perthyroidism is linked to an excessively cellular marrow,
lymphocytosis, and lymphoid hyperplasia [20].

This intimate relationship exists especially between im-
mature erythrocytes and the endocrine system. It is well
known that human erythropoietin (Epo), a glycoprotein
hormone composed of 165 amino acids, is a crucial factor
for the survival, viability and proliferation of erythrocyte
progenitor cells [1, 17]. In bone marrow, Epo binds to the
homodimeric Epo receptor, and through JAK-2/STAT-5
signaling pathways induces the expression of anti-apoptot-
ic proteins (e.g. Bcl-xL) and promotes the survival of eryth-
rocytic progenitors, particularly the colony-forming unit-
erythroid (CFU-E) [21]. Apart from this, Epo activates
genes promoting proliferation, differentiation, and matu-
ration of immature forms of erythrocytes. Approximately
four days after an increase in Epo levels, there is a rise in
the number of reticulocytes and mature erythrocytes that
enter the bloodstream [1, 2, 18].
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In addition to Epo, the male hormone testosterone
strongly stimulates erythropoiesis [1, 18]. The mechanisms
by which testosterone promotes erythropoiesis are not well
understood. It is hypothesized that testosterone induces
erythrocytosis by stimulating the production of Epo [15].
Testosterone also acts directly on the bone marrow, in-
creasing the number of Epo-responsive cells [1, 22, 23].

Surprisingly, comprehensive research on erythrocyte
biochemical pathways, metabolism, and structure-activity
relationship with a substantial number of publications has
revealed that a relatively large number of endocrine hor-
mone receptors are expressed not only on humane im-
mature but also on mature erythrocytes [24, 25, 26]. This
discovery rises the questions whether these hormonal
receptors represent only the remnants of receptors from
young (immature) forms of erythrocytes, or do they have
their own physiological function and pathophysiological
significance. Are they functional in mature erythrocytes?
The literature lacks data explaining how erythrocytes have
a relatively long lifespan, of 120 days, despite their low
complexity and their inability to transcriptionally up-
regulate antioxidant (and all other stress-related) defense
mechanisms. The goal of this literature review is to sum-
marize the protective and supportive impacts of hormones
on four mature erythrocyte vital characteristics: volume
homeostasis (osmotic resistance and fragility), deform-
ability/rheology, affinity of erythrocyte hemoglobin to
oxygen, and eryptosis.

We investigated the literature data (PubMed, Google
Schoolar) from the latest five years with the following
keywords employed: hormonal receptors, mature eryth-
rocytes. The number of articles found was not system-
atically quantified, as the focus was not on providing an
exhaustive coverage of all relevant studies but rather on
identifying representative and key sources that support
the narrative analysis.

ERYTHROCYTE VOLUME HOMEOSTASIS

Preserving of cellular volume homeostasis is essential for
the survival of erythrocytes [1]. Disturbance of this ho-
meostasis, a feature of several inherited anemias, leads to
abnormal erythrocytes. Several pathways mediate water
and solute homeostasis in normal erythrocytes, where cel-
lular volume is primarily controlled via the sodium-potas-
sium ATPase pump (Na*/K*ATPase), that maintains the
intracellular low sodium, high potassium composition by
actively transporting sodium out of and potassium into
the erythrocytes [1].

Hormones that affect the function of Na*/K*-
ATPase and RBC osmotic fragility

Thyroid-stimulating hormone (TSH) is a glycoprotein
synthesized by the thyrotrophs of the anterior pituitary
gland and its main role is to stimulate the thyroid gland
to secrete thyroxine (T,) and triiodothyronine (T,). TSH
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acts through TSH receptors (TSHr), which are G-protein
coupled receptors [1].

Balzan et al. [27] identified the TSHr on human eryth-
rocyte membranes in 2007. Subsequently, in 2009, they
demonstrated that TSH binds to TSHr, affecting Na*/K*-
ATPase [28]. Additionally, Mendonga-Reis [29] in 2024
found that TSH enhanced erythrocyte resistance to he-
molysis by inhibiting the AMPK-dependent pathway and
activating the PI3K/AKkt signaling pathway.

Further, research indicates that individuals with sub-
clinical hypothyroidism exhibit decreased Na*/K*-ATPase
function in erythrocytes, suggesting its potential role as an
early indicator of hypothyroidism [17]. Moreover, elevated
TSH levels in sickle cell anemia patients correlate with dis-
ease severity and duration, implying a potential influence
of TSH on disease progression [20]. The identification of
a functional TSHr in erythrocytes and the elucidation of
associated pathways suggest that TSH can influence eryth-
rocyte behavior and fate.

From a physiological point of view, it seems reasonable
to assume that TSH enhances the osmotic resistance of
erythrocytes to hemolysis in a state of elevated metabolism,
since all the end-products of metabolism are osmotically
active, and because of that they inevitably induce osmotic
stress to erythrocytes.

Angiotensin II (Ang II) can enhance erythrocyte os-
motic resistance and decrease hemolysis, particularly bene-
ficial for individuals with sickle cell anemia [12]. Although
the precise mechanisms by which Ang IT influences eryth-
rocytes are not entirely clear, it is understood that the ATR,
receptor can impact multiple signaling pathways related to
cell survival and osmotic control.

Cortisol binds to the erythrocyte membrane, impair-
ing epinephrine binding and resulting in an increase in
the microviscosity of the membranes and a rise in Na*/
K*-ATPase activity [30, 31].

Endothelin-1 (ET-1), a peptide hormone composed
of 21 amino acids, is a potent vasoconstrictor in humans.
Within erythrocytes, ET-1 enhances the activity of protein
disulfide isomerase, an enzyme involved in regulating ion
channels that promote potassium and water loss from cells,
resulting in erythrocyte dehydration and heightened sus-
ceptibility to hemolysis [32]. In sickle cell anemia, elevated
ET-1 activity can induce dehydration of sickle erythro-
cytes, increasing their stiffness and propensity to aggregate.
Investigations into ET-A receptor antagonists as potential
therapies aim to mitigate these adverse effects, potentially
enhancing the well-being of individuals with sickle cell
anemia.

See Table 1 for hormones influencing erythrocyte os-
motic resistance/fragility.

Table 1. Hormones influencing red blood cells’ osmotic resistance/
fragility

Increases osmotic resistance Decreases osmotic resistance
TSH Endothelin-1

Angiotensin Il

Cortisol
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RBC FLEXIBILITY AND RHEOLOGY

The hemorheologic responses involved in the body’s re-
actions to stress, energy regulation, and growth are not
fully understood [18, 33]. Erythrocyte flexibility refers to
the cells’ capacity to adjust their shape in response to dy-
namically changing flow conditions. The indicators that
expressed the erythrocyte membrane flexibility are RBC
deformation index (RDI: 0.47-0.55) and erythrocyte rigid-
ity index (Male: 7.16, Female: 7.14) [33]. The hormones
can either enhance or reduce red cell deformability, thereby
aiding in adjusting microcirculatory blood flow accord-
ingly [30]. The stiffening of erythrocytes may either be
reversible or part of the sequence of events culminating
in programmed red cell death (eryptosis).

Hormones that improve the RBC flexibility/
rheology

Catecholamines, during stress, regulate erythrocyte rhe-
ology via a- and B-adrenergic receptors [25, 33]. This
is consistent with the other classical effects of catechol-
amines mediated by B-adrenergic receptors (vasodilation,
increased cardiac output, etc.) that all lead to an increased
blood flow. The effect of these hormones on erythrocyte
deformability is mostly under the control of intracellular
Ca**-regulating pathways [25]. In contrast to this beneficial
effect of catecholamines on erythrocyte deformability in
physiological conditions, a decreased erythrocyte deform-
ability was observed in untreated pheochromocytoma [34].

Erythropoietin improves red cell deformability [16, 17,
30]. Chronic kidney disease-associated hemorheological
disturbances (reduced erythrocyte deformability) were
corrected with treatment using recombinant human Epo
(rhEPO) [35]. In cancer patients, rhEPO increases red cell
deformability and decreases red cell aggregation [30].

TSH. The results indicate that the TSHr decreases he-
moglobin S polymerization and enhances the deformability
and adhesion of sickle erythrocytes [29].

Leptin, a hormone released by adipocytes, has been
shown to improve erythrocyte deformability via a NO-
and cGMP-dependent mechanism [30]. Aditionally, the
specific binding of leptin to erythrocytes delivers pancre-
atic hormones and stimulates ATP release [36]. Leptin is
involved in regulatory loops that link energy stores and
circulation [16].

Hormones that impair the RBC flexibility/rheology

On the other hand, several hormones have been identified
to decrease erythrocyte membrane flexibility.

Thyroid hormones. Erythrocytes also exhibit receptors
for the thyroid hormone [20]. Whether thyroid hormones
are regulators of blood rheology remains unclear, but a
decrease in erythrocyte deformability has been reported
to exist in hyperthyroidism [20, 37, 38] and to be revers-
ible after the successful treatment of the disease [20, 37].

Prostaglandins. PGE, decreases the deformability of
erythrocytes and increases their aggregability [15, 39].

www.srpskiarhiv.rs ‘
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Female sex hormones. The effects of sex hormones on
erythrocyte rheology may contribute to the very complex
mechanisms of ovulation and, consequently, play a role in
the regulation of fertility [16, 26].

Insulin-like growth factor 1 (IGF-1). Clinical report
from an exercise-test in 39 male elite athletes indicates that
elevated levels of IGF-1 are associated with lower erythro-
cyte deformability at high shear rates [33].

Apelin is a cytokine that is predominantly secreted by
adipocytes [1]. In rats with reduced erythrocyte deform-
ability due to the experimental induction of diabetes and
ischemia-reperfusion injury of the heart, apelin-13 has
been shown to restore this loss of erythrocyte deform-
ability [40].

Melatonin can elevate the erythrocyte deformability
in experimental sepsis due to its nitric oxide scavenging
activity and antioxidant effect [41]. However, pinealectomy
alone did not lead to any statistically significant altera-
tions in erythrocyte deformability, but when melatonin was
added, a significant decrease was observed [42]. Therefore,
this issue remains controversial and requires further study.

See Table 2 for hormones influencing erythrocyte flex-
ibility.

OXYGENATION OF HEMOGLOBIN

The function of erythrocyte 2,3 diphosphoglycerate (2,3-
DPQ@), an intermediate molecule of glycolysis, is to bind
to deoxyhemoglobin and facilitate oxygen transport.
Hormones may modulate hemoglobin’s capacity to bind
and release oxygen, by affecting the level of erythrocyte
2,3-DPG.

Thyroid hormones. Tokay et al. [43] showed that
thyroid hormones upregulated the levels of 2,3-DPG in
erythrocytes, thus implying a possible connection with
the regulation of oxygen release from hemoglobin. The
hormones effects on 2,3-DPG synthesis may provide a bio-
chemical explanation for the shift in the oxyhemoglobin
dissociation curve seen in thyroid disorders.

Table 2. Hormones influencing red blood cells’ flexibility

Koji¢ Z. et al.

Dehydroepiandrosterone (DHEAS) has been linked to
changes in the deoxygenation rate of hemoglobin, which
could influence hemoglobin’ affinity for oxygen [17, 44,
45].

See Table 3 for hormones influencing oxygenation of
hemoglobin.

ERYTHROCYTE ERYPTOSIS

Eryptosis refers to the premature, stress-triggered suicidal
death of erythrocytes, which is distinct from accidental
hemolysis or cellular senescence [2, 15].

Eryptotic effect is triggered by endocannabinoids.
Anandamide, a type of endocannabinoid, has been re-
ported to induce eryptosis, by increasing the activity of
erythrocyte cytosolic Ca*, resulting in the cell shrinkage
and, subsequently, the induction of eryptosis [46].

Anti-eryptotic hormones

Inhibition of eryptosis is crucial in certain therapeutic situ-
ations, such as in patients with sickle cell anemia, who
experience elevated eryptosis levels that can exacerbate
anemia [18]. Numerous hormones can inhibit eryptosis,
some of which are mentioned bellow.

Erythropoietin not only stimulates erythrocyte de-
velopment in the bone marrow (erythropoiesis), but also
exhibits direct anti-eryptotic properties, as it reduces Ca**-
mediated eryptosis by inhibiting non-selective cation chan-
nels [15].

Catecholamines also have an anti-eryptotic effect, by
impairing the Ca* cation channels’ ability to enhance the
entry of Ca** ions [47].

Leptin and thyroid hormones have been associated
with maintaining erythrocyte deformability, indicating a
potential anti-eryptotic effect [16, 20].

Melatonin. While the effects of melatonin on eryth-
rocyte deformability remain controversial, some studies
suggest that melatonin may have an anti-eryptotic effect

ImprQ\{e RBC Reverse thg Igss Impair RBC flexibility Unc.le.a.r results on RBC
flexibility of RBC flexibility flexibility
Cateholamines Apelin Catecholamines: supraphysiological levels — in untreated pheochromocytoma | Female sex hormones
Erytropoietin Erytropoietin: subphysiological levels, in chronic kidney disease Melatonin

TSH Thyroid hormones

Leptin IGF-1

PGE2

RBC - red blood cells; TSH - thyroid-stimulating hormone; IGF-1 - insulin-like growth factor 1; PGE2 - prostaglandin E2

Table 3. Hormones influencing oxygenation of hemoglobin

Decreases Increases

Thyroid hormones -
Dehydroepiandrosterone (DHEAS) -

DOI: https://doi.org/10.2298/SARH241008091K

Table 4. Hormones influencing red cell eryptosis

Eryptotic effect Anti-eryptotic effect
Erythropoetin
Catecholamines
Leptin

Thyroid hormones
Melatonin

Endocannabinoids
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[41]. The beneficial effect of melatonin has been already
proven to prevent oxidative stress-induced damage as-
sociated to lipid peroxidation [41].

See Table 4 for hormones influencing red cell eryptosis.

LIMITATIONS

This literature review examines the role of hormones in
regulating erythrocyte survival and functionality.

The action of hormones on mature (and immature)
erythrocytes involves a complex interplay between various
signaling pathways and receptors, influencing erythrocyte
function, survival, and responses to different physiologi-
cal stressors. However, this review does not address two
key points. Firstly, it does not explain the mechanism by
which certain hormonal receptors are spared from removal
during terminal erythrocyte maturation - specifically, how
some receptors avoid the “tagging” process that leads to
their autolysis (via an autophagy/exosome-mediated path-
way tied to membrane remodeling). Secondly, it does not
explain the complex interplay among the various signaling
pathways and receptors involved. Due to these limitations,
the review cannot be considered a fully “causal literature
review.’

This literature review can neither be considered a “sys-
tematic literature review; since it does not have strict in-
clusion and exclusion criteria. Compared to a systematic
literature review on the same topic, this review is more
subjective, as we have constructed a narrative based on se-
lected relevant studies in accordance with our own criteria.
Our focus is on interpreting results and conceptualizing
ideas rather than on providing a comprehensive, objective
analysis of all relevant studies.

By integrating findings from different research endeav-
ors, we aimed to present a coherent narrative that high-
lights the broader picture. Thus, this literature review
paper should be classified as a “narrative (contemplative)
literature review”” To the best of our knowledge, there is no
similar integrative interpretation of this intriguing “intel-
ligent design” that enhances the physiological plasticity of
mature erythrocytes.
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KaKo XopMOHM NocpeCTBOM CBOjUX peLienTopa yTUUY Ha 3pene eputpouuTe

3Be3paHa Kojuh'? Cangpa Xotuh*4, CuHnwa Puctnh>S

'YHuep3uteT y beorpagy, MeauumHck dakynteT, beorpag, Cpbuja;

2/HCTUTYT 32 MeauUMHCKy dpusnonorujy, beorpag, Cpbuja;

*YHneep3uTeT y barboj Nlyuu, MegnumHckmn dpakynter, barba Jlyka, Penybnuka Cpnicka, bocHa 1 XepLierosuHa;
*YHueep3uTeT y barboj Nyuu, MegnumHckm dakyntet, Katepa 3a nHTepHy MeauumHy, barba Jlyka, Peny6nuka Cpncka, bocHa n

XepuerosuHa;

YHusep3uTeT y MictouHom CapajeBy, MegnumHcku dpakyntet, CapajeBo, Peny6nuka Cpnicka, bocHa 1 XepLerosuHa;
SYHCTUTYT 32 MeauUMHCKY dusnonorujy, ®oua, Penybnuka Cpricka, bocHa n XepuerosuHa

CAMETAK

AHemuja je Hajuewhn nopemehaj 3apaBsba CByAa y CBETY U
jemHO ofl CTaba ca KojiMa ce NleKapu oriuTe NpaKce Hajuewhe
cycpehy. EputpoumnTyi cy n3noxeHn cTanHoM CTpecy [OK LIMPKY-
NNLLY Y KPBY (HAP. TPMe CTPecC ycieq cuna CMrLakba, OCMOTCKI
CTPeC, OKCUAATVBHU CTPEC).

Linsb oBor npernefHor YnaHKa je 61o fa aHanusupa nurepa-
TypHe nofaTke O TOME LUTa XOPMOHCKM peLientopu paje Ha
3pesiuM epuTPOLMTIMA U KaKo Cy OHU NMOBE3aH Ca PU3NKOM
0[] HaCTaHKa aHemuje.

VcTpaxuBanu cMo nutepatypHe nofatke objaB/beHe TOKOM
npeTxofHvx neT roguHa (PubMed, Google Scholar) v aHanu3u-
panu epeKTe Koje XOPMOHCKI peLienTopy Majy Ha YeTUpU cre-
LMPMUHe KapaKTePUCTUKE 3pefIuX epUTPOLIATa: Ha OCMOTCKY
0TnopHOCT, fiedopmabunHocT/peonorujy, apUHUTET XEMOTIIO-
6VHa Npema KMCEOHUKY 1 epunTo3y epuUTpoLmTa.
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YTBpAUAN CMO ia XOPMOHU MMajy CHa)aH yTuLaj Ha perynu-
catbe NpexuB/baBama U GyHKLMOHaNHOCT eputpouunTa. OB
peuentopu noBehasajy Gr3MONOLLIKY NNACTUYHOCT 3pENX epu-
TpouWTa 1 Cy>Ke Kao eprKacHO CPefCTBO 3a Ay6rbe eNoBatbe
VHTErpasH1X perynaTopHmMx MexaHn3ama, Koju NpoMoBuLLY
OoncTaHak epuTpouuTa 1 XomeocTasy Lenor Tena. floaatHo,
OBV XOPMOHCKM peLienTopu Cy YCKO NMOBe3aHu ca pU3NKOM
o[} HaCTaHKa aHeMuje: Kaga cynopTmBHa GyHKLMja XOpMOHa 1
HUXOBYX peLienTopa Huje edprKkacHa, epunTo3a ce nosehasa
1, Kao nocneanLa Tora, CMakbyje ce 6poj 3penunx eputpoumTta
y UMpKynaumju.

KmbyuHe peun: dbusvonolike nojase; KpaHe henuje; xemmnka-
Nvije 1 NEKOBY — XOPMOHU; 0CMOTCKa GparniHOCT/0TNOPHOCT;
6051eCT, XeMaToNOLLIKe — aHeMUja
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