SUMMARY
Introduction/Objectives The shape and size of the orbital cavity are important parameters in planning surgical interventions and have significance in anthropology and forensic medicine. The aim of this study was to determine the morphometric characteristics of orbital cavity in Serbian population and to examine if there are differences in examined parameters between Serbs and the Roma Community of Serbia.

Methods Using computer tomography and subsequent multiplanar reconstruction we analyzed orbits from 76 Serbian and 18 Roma healthy volunteers. There was no significant difference in age between the ethnicities.

Results The height and width of the left orbit and the height of the right orbit were significantly higher in Roma group, whereas the width of the right orbit was not statistically different between ethnicities. Orbital indices, however, for both left and right orbit did not significantly differ between Serbian and Roma examinees. Right orbital volume did not differ between the groups, but left orbits had significantly larger volumes in Roma population. Finally, biorbital and interorbital width were both significantly higher in Roma than in Serbian examinees. We could not show differences between sexes except for the biorbital width, which had lower values in Serbian, but not Roma women than in men.

Conclusion Taken together, our results indicate larger orbits, as well as greater distances between the eyes in Roma than in Serbian examinees.

Keywords: ethnicity; sex; multiplanar reconstruction; orbit; Roma; Serbian

INTRODUCTION
The orbit is a craniofacial cavity which contains eyeball, optic nerve and accessory ophthalmic elements including muscles, ligaments, orbital fat body, blood vessels and nerves. The shape of the orbital cavity is determined by geometry of cranial and facial bones and its morphometric characteristics are variable and depend on sex, race, and ethnicity [1–4]. Its anatomical parameters are of great importance for anthropology, reconstructive surgery and forensic medicine [5].

Some studies described the sexual dimorphism of the orbit [6, 7, 8]. Also, its asymmetry was described with the right cavity larger than the left one, as the result of the dominance of the left cerebral hemisphere [7, 9]. The fractures of the orbital cavity, with soft-tissue deviations and severe complications such as double vision, enophthalmos and ocular dystopia, present a complex task in reconstructive surgery [1, 5, 10]. Knowledge of the normal morphometry of the orbital cavity is of great importance in planning the surgical approach to orbital fracture [11], but also in the case of other pathologies such as congenital, neoplastic and Graves’ ophthalmopathies [9, 12, 13, 14]. In the adult population, the orbital volume is usually between 20 and 30 cm³ [1, 10, 13, 15]. Contemporary methods for determination of the orbital measures are based on the analysis of computed tomography (CT) and magnetic resonance imaging scans, although no standardized method for orbital volume measurements exists [16].

Another parameter, often used in facial morphometry is the orbital index. It is defined as the ratio between orbit height and orbit width, multiplied by 100. According to orbital index, three categories of orbital cavities were defined: 1) large (megaseme) – with orbital index 89 and more; 2) intermediate (mesoseme) – with orbital index in the range from 83 to 89; and 3) small (microseme) – with orbital index less than 83 [15, 16, 17]. The orbital index is one of the parameters used in many anthropological studies, because it depends on the shape of the face and varies among the races, regions within the same race, and ethnic groups [18].
The aim of this study was to determine the morphometric characteristics of orbital cavity in Serbian population and to examine if there are differences in examined parameters between Serbs and the Roma ethnic group of Serbia. Previous anthropometric studies in this population mostly related to the measurement of the body weight, height, body mass index, and nutrition. Studies with orbital measurements have not been conducted so far [19, 20].

METHODS

The study was designed as a retrospective descriptive non-randomized observational study, that used data from patients’ skull images, archived in the hospital system for data archiving. The patients were examined at the Department of Diagnostic Radiology, Clinical Center of Kragujevac in the period from January 2010 to November 2015. The radiological imaging was performed on 64-slice multidetector CT (MDCT) scanner (Aquilion 64, Toshiba, Minato City, Japan). All scans were performed in the axial plane, with subsequent multiplanar reconstruction (MPR). The patient lied on his back, with arms extended downwards, next to the body. The head restraint was used. The study included 94 patients (61 male and 33 female) aged 24–86 years, without pathological changes, who were referred to this examination for various reasons. The ethnicity of the subjects was determined based on the questionnaire form that they filled out before the examination.

The subjects’ written consent was obtained according to the Declaration of Helsinki and the study has been approved by the ethic committee and conforms to legal standards.

Orbits were inspected, as part of a broader region examination (whole head, facial mass, paranasal cavities). The radiological imaging was performed on 64-slice MDCT scanner (Aquilion 64, Toshiba, Japan). All scans were performed in the axial plane, with subsequent MPR. The patient lied on his back, with arms extended downwards, next to the body. The head restraint was used. The scan range is determined on the lateral topogram and depends on the region of interest. Scanning parameters were: 120 kVp, 500 mAs, gantry rotation of 0.75 seconds, pitch 0.5 mm, slice thickness of 0.5 mm and 0.4–0.6 mm reconstruction thickness. Analysis of all images and MDCT data is performed on a Vitrea 2 workstation ver.4.1.14.0 (Vital Images, Minnetonka, MN, USA). All measurements were done by two independent radiologists, using commercially available software (Imaging Software ver.4.1.14.0, Vital Images). For evaluation of inter-observer reliability, the intra-class correlation coefficient was used and intra-class correlation coefficient > 0.8 was considered as excellent agreement. Measurement of orbital morphometric parameters and orbital volume is performed on the same workstation and with the same software on 3D reconstruction of the bone structures obtained by examinations.

Standard anatomical points were determined and used for the measurement of the orbital width, height, biorbital-interorbital diameter and the orbital index. Orbital width – laterally curved distance between the dacryon (the point where frontal, lacrimal and maxillary bones intersect and the medial margin of the orbit is formed) and ectoconchion (the point of intersection of the anterior surface of the lateral limit of the orbit; the line divides the orbit along its axis into two parts) (Figure 1) [8]; orbital height – distance between the superior and inferior orbital margins; it is perpendicular to its width and similarly divides the orbit into two parts (Figure 1) [8]; orbital index – orbital height/orbital width × 100 [21]; biorbital width – distance between left and right ectoconchion (Figure 1) [8]; interorbital width – distance between right and left dacryon (Figure 1) [8]. Measurements were performed on coronal plane using 3D images reconstructed from orbital images. The relation of age and sex with the results was analyzed.

All data are presented as the mean values ± standard deviation. Statistical analysis was performed using a parametric statistical test, as the data had normal distribution and equal variance. Two-way analysis of variance (ANOVA) with factors “ethnicity” and “sex” was used to compare the groups, followed by Holm-Sidak post-hoc multiple comparisons analysis. Probability value for the rejection of the null hypothesis was set to 0.05.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RESULTS

We examined the orbits of 76 Serbian (41 male and 25 female) and 18 Roma (10 male and eight female) subjects,
using CT scanner and MPR. The subjects were age-matched, with the average age of 56.4 ± 17 and 52 ± 11.3 for Serbian and Roma groups, respectively (p = 0.3; two-way ANOVA). Detailed demographic data is given in Table 1. As sexual dimorphism has been reported for orbital measures, we analyzed our results using two-way ANOVA, with factors “ethnicity” and “sex” [12]. The height of the left orbit (38.05 ± 2.96 mm in Serbian and 39.83 ± 2.28 mm in Roma; p = 0.012) was significantly higher in Roma than in Serbian examinees. Similarly, the width of the left orbit (42.12 ± 2.28 mm in Serbian and 44.07 ± 1.95 mm in Roma; p < 0.001) was higher in Roma than in Serbs. The height of the right orbit (38.28 ± 3.35 mm in Serbian and 40.12 ± 2.34 mm in Roma; p = 0.036) was significantly higher in Roma group, whereas the width of the right orbit (43.69 ± 2.39 mm in Serbian and 44.31 ± 2.01 mm in Roma; p = 0.088) was not statistically different between the ethnicities (Figure 2A). Orbital indices, however, for both the left orbit (90.5 ± 6.8 in Serbian and 90.4 ± 3.5 in Roma; p = 0.78) and the right orbit (87.7 ± 7.2 in Serbian and 90.5 ± 3.4 in Roma; p = 0.235) did not significantly differ between Serbian and Roma examinees (Figure 2B). Right orbital volume (22.49 ± 3.57 mm³ in Serbian and 23.67 ± 1.22 mm³ in Roma; p = 0.053) did not differ between the groups, although there was a tendency towards higher values in Roma, and the left orbits (21.63 ± 3.14 mm³ in Serbian and 23.44 ± 1.15 mm³ in Roma; p = 0.002) had significantly larger volumes in Roma population (Figure 2C). As for the distances between the eyes, biorbital width (100.50 ± 4.28 mm in Serbian and 104.65 ± 3.21 mm in Roma; p < 0.001) and interorbital width (187.6 ± 3.25 mm in Serbian and 20.15 ± 1.12 mm in Roma; p = 0.035) were both significantly higher in Roma than in Serbian examinees (Figure 2D). Of all measured parameters, only biorbital width was significantly different for factor “sex” (p = 0.004) and had significant interaction between “sex” and “ethnicity” (p = 0.003). Biorbital width was higher in male than in female Serbs (102.37 ± 3.37 mm in males vs. 96.88 ± 3.58 mm in females), whereas this difference was not present in the Roma population (104.60 ± 3.65 mm in males vs. 104.72 ± 2.82 mm in females). Overall, our results indicate larger orbits and larger distances between them in Roma than in Serbian population.

DISCUSSION

The morphometric characteristics of the orbital cavity are variable and depend on sex, race and ethnicity, and their estimation is relevant for anatomy, forensic medicine, anthropology and reconstructive and aesthetic surgery [2, 3, 4, 8, 13]. The results of our CT study showed that the height and the width of the left orbit and the height of the right orbit were significantly higher in Roma examinees,

<table>
<thead>
<tr>
<th>Examinees</th>
<th>Number of examinees</th>
<th>Mean Age</th>
<th>Age SD</th>
<th>Age span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbian male</td>
<td>51</td>
<td>55.9</td>
<td>17.62</td>
<td>24–86</td>
</tr>
<tr>
<td>Serbian female</td>
<td>25</td>
<td>58.4</td>
<td>15.68</td>
<td>29–85</td>
</tr>
<tr>
<td>Serbian all</td>
<td>76</td>
<td>56.4</td>
<td>17.04</td>
<td>24–86</td>
</tr>
<tr>
<td>Roma male</td>
<td>10</td>
<td>50.8</td>
<td>14.06</td>
<td>31–72</td>
</tr>
<tr>
<td>Roma female</td>
<td>8</td>
<td>53.5</td>
<td>7.34</td>
<td>44–61</td>
</tr>
<tr>
<td>Roma all</td>
<td>18</td>
<td>52</td>
<td>11.35</td>
<td>31–72</td>
</tr>
<tr>
<td>All</td>
<td>94</td>
<td>55.6</td>
<td>16.1</td>
<td>24–86</td>
</tr>
</tbody>
</table>

Figure 2. Orbital measurements in Serbian vs. Roma examinees; shown are mean values + SD for orbital height and width (A), orbital indices (B), volumes (C) and distances between the eyes in Serbian (blue bars) and Roma (red bars) examinees; two-way ANOVA with Holm–Sidak post-hoc, * p < 0.05; ** p < 0.01; *** p < 0.001. R (right), L (left) H (height), W (width), I (index), V (volume), BiO (biorbital) IO (interocular)
whereas the width of the right orbit was not statistically different between the ethnicities. The obtained results for these parameters were similar to the findings of previous CT studies conducted in Turkish and Indian populations [3, 9, 22]. The sex differences in anatomy of the orbital cavity were confirmed by various studies, with male orbits being significantly larger than female [9, 11, 16, 23]. In comparison to reports that showed sex differences for most of the observed parameters [9, 16], in our study statistically significant sexual dimorphism was found for the biorbital width, which was higher in male than in female Serbs, whereas this difference was not present in Roma population. Thus, it is possible to speculate that the lack of sexual dimorphism in Roma population influenced our results. The results of our study confirmed the earlier findings in variation of orbital dimensions between the left and right side [18, 24]. The observed parameters of the orbital height and width had a tendency to be higher on the right side, leading to the higher values of the left orbital index (right: 88.2 ± 6.7, left: 90.5 ± 6.3; p = 0.019, t-test). This is in accordance with the earlier findings and widely accepted theory that the scull and the face right/left asymmetry with higher values of the right orbital measures are the consequence of the brain asymmetry and the dominance of the left hemisphere [24, 25].

The orbital index is one of the parameters used in many anthropological studies, because it depends on the shape of the face and varies among the races, regions within the same race, and ethnic groups [19]. According to the values of orbital indices (right 86.5 ± 7.2 and left 90.2 ± 6.8), we could conclude that the right orbits in Serbs could be placed in mesoseme category, typical for the European and Caucasian race [24], whereas the left orbits are megaseme. Similar to the data from the Polish population [26], Serbian females had higher orbital indices (right: 90.02 and left: 91.09), which could be classified as megaseme, in comparison to the orbital indices of Serbian males. In both sexes, orbital index had tendency towards higher values on the left side, which was in males significant (p = 0.012, t-test). Orbital indices did not significantly differ between Serbian and Roma examinees. However, Roma examinees had a tendency toward higher values of orbital indices (right 90.5 ± 3.5 and left 90.4 ± 3.6), according to which, their orbits could be classified in megaseme category. Contrary to the findings in Serbian examinees, orbital indices in Roma had a tendency towards slightly higher values on the right side than the left and among males (right: 91.19 ± 3.3 and left: 90.96 ± 3.7) than females (right: 89.75 ± 3.3 and left: 89.69 ± 3.2). These findings demonstrate that ethnicity influences orbital measures.

The volume of the right orbit was slightly higher than the left one, which was also in accordance with the earlier studies and the scull asymmetry [1, 16]. The right orbital volume did not differ between the groups, but the left orbits had significantly larger volumes in Roma population. Finally, biorbital and interorbital width were both significantly higher in Roma than in Serbian examinees. Interorbital width is earlier described as one of the sexually dimorphic morphological parameters of the skull [21], but we did not find statistically significant difference, although it was greater in males. In accordance with similar studies [17], biorbital width was found as sexually dimorphic in Serbian examinees, with higher values among males, while in Roma this sex difference was not statistically significant. A relatively small number of Roma examinees is admittedly a weakness of our study, but it should be considered that ethnic Roma rarely visit doctors’ offices and have limited access to the health care system [27, 28].

CONCLUSIONS

Morphological measurements of the orbit are valuable for better practical knowledge and understanding of the difference between sexes, races, and ethnicity. Taken together, our results indicate larger orbits, as well as greater distances between orbits in Roma than in Serbian examinees. This is, to our knowledge, the first study addressing anthropometric parameters of the orbital cavity in Serbian and Roma populations.

ACKNOWLEDGEMENT

This study was supported by project grant No. JP 12/16 to MJ.

Conflict of interest: None declared.

REFERENCES

