INTRODUCTION

Acute liver failure (ALF) is a complex clinical syndrome which develops as a consequence of massive or submassive hepatic cell necrosis, with a development of hepatic encephalopathy (HE) and a severe disturbance in liver functions. It is usually fatal (in 60–90%), most often within the first week of the disease [1]. Since there are several etiological factors, with different clinical course and outcome of the disease and many complications, different authors give diverse classifications of ALF [2, 3]. The researches of King’s College Hospital, based on experience with 558 patients with ALF and 47 patient with later-developed liver failure, gave a new classification of ALF. Their suggestion is that ALF should be used as a frame term, which should be predetermined with prefixes hyper- or sub-, which would be two extremes of this clinical syndrome. The term ‘hyperacute liver failure’ relates to patients who develop encephalopathy within seven days after the onset of jaundice. This group of patients has significant survival rate (around 40%) with the use of usual medications. For patients who develop encephalopathy eight to 28 days after the appearance of jaundice the term ‘acute liver failure’ is used. These patients have extremely low survival rate (7%). For patients in whom encephalopathy develops after four weeks (29–84 days after the appearance of jaundice) the term ‘subacute liver failure’ should be used. Survival rate for the last group is low, about 14%. The most common etiological factor was acute hepatitis non-A, non-B, making 83% of all cases [4]. Adopting this terminology allowed for standardized approach and interpretation of controlled clinical studies, and also for the application of new therapeutical methods, including bioartificial liver support and liver transplantation.

In addition to time elapsing between the appearance of jaundice and encephalopathy, other prognostic factors of outcome of ALF were discovered, such as the level of serum bilirubin, ammonemia, international normalized ratio (INR), thyroid status, etc. By combining these factors different prognostic models were made in order to predict mortality, and to timely indicate the need for liver transplantation, the only remaining therapeutic option [5]. This is especially important for ALF of unknown origin since there is no specific therapy.

CASE REPORT

A 40-year-old male patient from Belgrade, married, with two children, was admitted to the Clinic for Infectious and Tropical Disease in Belgrade, Clinical Centre of Serbia, due to nausea, loss of appetite, aversion to food, dark urine, and yellowing of the eyes. The disease started 10 days before his admission to the hospital. Epidemiological data excluded the possibility of liver infection by primary and potentially hepatotropic viruses, and acute toxic liver failure (caused by alcohol, medications, herbs, different supplements, etc.). At admis-

sion, the patient was afibrile, had jaundice, the liver was palpable 2 cm below the right rib cage, and there were no signs of HE. Biochemical
nodular lesions with atypical magnetic resonance imaging was performed – cirrhotic liver and multiple (177 nmol/L). Magnetic resonance imaging scan of the level 30 g/l, PT 27%, INR 2.28), and hyperammonemia (302 U/L; ALT 281 U/L), hyperbilirubinemia (TBil up 655 μmol/L; DBil 256 μmol/L) and a gradual fall of the liver synthetic function (albumin level 31 g/L; PT 46%; INR 1.61; AFP 129 ng/L). Since there was progressive liver failure with threatening hepatocellular insufficiency, prednisone and 20% human albumins were included in the therapy. In the further course there was no positive therapeutic response; hence, on the 30th day of the treatment the patient fulfilled the criteria for ALF – PT 40%, INR 1.81. Three days later, the flapping tremor (asterixis) appeared as a sign of the second phase of HE. Lactulose, L-ornithine-L-aspartate (LOLA) and fresh frozen human plasma were added to the preceding therapy. In the further course of the disease the patient had episodes of HE with severe jaundice (TBil around 500 μmol/L), low AFP (17.5 ng/L), and hepatocellular insufficiency (PT 36%, INR 2.01). At the end of two months of treatment, for the first time, abdominal ultrasound verified inhomogeneous liver parenchyma, splenomegaly (12.5 cm) and some ascites in the abdomen. Our conclusion was that our patient had subacute liver failure with cirrhotic transformation. The patient was put on the transplant waiting list.

In the further course of the disease, fatigue and loss of appetite continued, with an increase in serum transaminases (AST 3,113 U/L; ALT 4,957 U/L), jaundice (TBil 655 μmol/L; DBil 256 μmol/L) and a gradual fall of the liver synthetic function (albumin level 31 g/L; PT 46%; INR 1.61; AFP 129 ng/L). Since there was progressive liver failure with threatening hepatocellular insufficiency, prednisone and 20% human albumins were included in the therapy. In the further course there was no positive therapeutic response; hence, on the 30th day of the treatment the patient fulfilled the criteria for ALF – PT 40%, INR 1.81. Three days later, the flapping tremor (asterixis) appeared as a sign of the second phase of HE. Lactulose, L-ornithine-L-aspartate (LOLA) and fresh frozen human plasma were added to the preceding therapy. In the further course of the disease the patient had episodes of HE with severe jaundice (TBil around 500 μmol/L), low AFP (17.5 ng/L), and hepatocellular insufficiency (PT 36%, INR 2.01). At the end of two months of treatment, for the first time, abdominal ultrasound verified inhomogeneous liver parenchyma, splenomegaly (12.5 cm) and some ascites in the abdomen. Our conclusion was that our patient had subacute liver failure with cirrhotic transformation. The patient was put on the transplant waiting list.

Further course of the disease corresponded to decompensated liver cirrhosis with HE. Biochemical analysis showed inversion of transaminases activity (AST 302 U/L; ALT 281 U/L), hyperbilirubinemia (TBil up to 639 μmol/L), hepatocellular insufficiency (albumin level 30 g/L, PT 27%, INR 2.28), and hyperammonemia (177 nmol/L). Magnetic resonance imaging scan of the abdomen and magnetic resonance cholangiopancreatography was performed – cirrhotic liver and multiple nodular lesions with atypical magnetic resonance imaging analysis suggested acute hepatitis without hepatocellular insufficiency: aspartate aminotransferase (AST) 1,249 U/L, alanine aminotransferase (ALT) 2,907 U/L, total-value bilirubin (TBil) 393 μmol/L, direct bilirubin (DBil) 169 μmol/L, gamma-glutamyl transferase 194 U/L, alkaline phosphatase 115 U/L, prothrombin time (PT) 62.3%, INR 1.3. Hematological analyses were normal. Virological tests excluded hepatitis B virus (HBV) infection (HBsAg, anti-HBc IgM, and HBV DNA were negative), hepatitis C virus (HCV) infection (anti-HCV and HCV RNA were negative), hepatitis A virus (HAV) infection (anti-HAV IgM was negative), hepatitis E virus (HEV) infection (anti-HEV IgM negative), as well as the Epstein–Barr virus, cytomegalovirus, adenovirus, herpes simplex virus, and West Nile virus infection (IgM-class antibodies were negative measured by ELISA). Autoimmune liver disease, Wilson disease and hemochromatosis were excluded as well. A several-fold increase of the levels of alpha-fetoprotein (AFP) – 659 ng/L - was pointing to the regenerative potential of the liver. Ultrasound examination of the abdomen excluded the obstruction of the bile ducts, even though a gallstone of 1 cm in diameter was detected in the gallbladder. Thrombosis of the hepatic veins was excluded as well. A hematologist excluded hematology disease with possible liver infiltration.

In the further course of the disease, fatigue and loss of appetite continued, with an increase in serum transaminases (AST 3,113 U/L; ALT 4,957 U/L), jaundice (TBil 655 μmol/L; DBil 256 μmol/L) and a gradual fall of the liver synthetic function (albumin level 31 g/L; PT 46%; INR 1.61; AFP 129 ng/L). Since there was progressive liver failure with threatening hepatocellular insufficiency, prednisone and 20% human albumins were included in the therapy. In the further course there was no positive therapeutic response; hence, on the 30th day of the treatment the patient fulfilled the criteria for ALF – PT 40%, INR 1.81. Three days later, the flapping tremor (asterixis) appeared as a sign of the second phase of HE. Lactulose, L-ornithine-L-aspartate (LOLA) and fresh frozen human plasma were added to the preceding therapy. In the further course of the disease the patient had episodes of HE with severe jaundice (TBil around 500 μmol/L), low AFP (17.5 ng/L), and hepatocellular insufficiency (PT 36%, INR 2.01). At the end of two months of treatment, for the first time, abdominal ultrasound verified inhomogeneous liver parenchyma, splenomegaly (12.5 cm) and some ascites in the abdomen. Our conclusion was that our patient had subacute liver failure with cirrhotic transformation. The patient was put on the transplant waiting list.

Further course of the disease corresponded to decompensated liver cirrhosis with HE. Biochemical analysis showed inversion of transaminases activity (AST 302 U/L; ALT 281 U/L), hyperbilirubinemia (TBil up to 639 μmol/L), hepatocellular insufficiency (albumin level 30 g/L, PT 27%, INR 2.28), and hyperammonemia (177 nmol/L). Magnetic resonance imaging scan of the abdomen and magnetic resonance cholangiopancreatography was performed – cirrhotic liver and multiple nodular lesions with atypical magnetic resonance imaging characteristics were found. Free fluid in the abdomen, portal hypertension, and a gallstone were also observed.

After three months of treatment the patient’s disorder of consciousness deepened, up to the level of coma with hyperpyrexia. A lethal outcome occurred 102 days after the onset of the disease, in deep coma. Necropsy of the liver was performed and a cylindrical sample of 3.5 cm in diameter was obtained. The architecture of the liver was damaged in the cirrhotic manner. Cholestasis was severe and there were large zones of ischemic necrosis of hepatocytes. Iron staining results were negative, as well as copper-associated protein staining. There was no tumor tissue of hepatocellular carcinoma (Figure 1).

DISCUSSION

ALF with multiple organ dysfunctions, i.e. insufficiency, can be caused by many agents and pathological conditions: viruses, medications, toxins, alcohol, congenital metabolism disorders, autoimmune liver disease, cardiovascular disease, leukemia, reticulosis, etc. [6]. Globally, HAV and HEV infections are the most common cause of ALF in developing countries, with the mortality rate over 50% [7]. Of the known primary hepatotropic viruses, HBV is the most common (67.8%) cause of ALF in our country [1]. Over the last several years in Western Europe and the USA, there are an increased number of occurrences of herbal products causing hepatotoxicity; cases with ALF with lethal outcome have also been reported [8]. Around 50% of ALF in the United States are caused by medications, especially acetaminophen [9].

ALF of unknown origin (undetermined cause) is registered with diverse frequency worldwide and is not dependent on epidemiological characteristics of the area – from 11% in Sweden to 38% in Sudan [10, 11]. In our previous research, undetermined cause of ALF was the second most frequent cause (12.6%), just behind HBV infection. These patients had the worst prognosis, and the mortality rate was 100%.
Clinical course of the disease was either acute or subacute liver failure [12]. Our patient had subacute course of liver failure (signs of HE appeared 33 days after jaundice) with undetermined cause – infection with known primary and potentially hepatotropic viruses were excluded, as well as occult HBV and HCV infection, autoimmune liver disease, Wilson disease and hemochromatosis. Based on a detailed anamnesis, biochemical analysis and histopathological findings, as well as regarding previous researches, this could be the case of infection by an unknown hepatotropic virus [13].

The way the hepatocytes die or, to be more precise, the amount of simultaneously died hepatocytes and intra-acinus localization of necrosis are at the center of today’s histological classifications of acute viral hepatitis (AVH). Therefore, there are four basic histological forms of AVH: with focal necrosis, with confluent bridging necrosis, with panacinar necrosis, and with periportal necrosis [14]. The outcome of AVH with confluent bridging necrosis varies. Complete or almost complete healing can occur, by recovering of the parenchyma with rare remaining fibrosis.

In some patients, lethal outcome is possible in the first 10 days of the disease with signs of ALF, or in two or three months of the disease with signs of subacute liver failure with fibrosis. In rare cases, real cirrhosis and nodular regeneration hyperplasia of the parenchyma can be found [15]. In our patient, subacute course of the disease and histopathologically proved liver cirrhosis could relate, by the course and the outcome, to acute viral hepatitis with confluent bridging necrosis. Liver transplantation is the last treatment option in patients with ALF, when conservative treatment options fail and lethal outcome is imminent [16]. Our patient was put on the transplant waiting list.

ACKNOWLEDGEMENT

The authors wish to thank Prof. Ivan Boričić, MD, from the Institute of Pathology, Belgrade, Serbia, for the histopathological picture and his description of our patient’s liver tissues.

REFERENCES