Angiogenic capabilities of omentomyelopexy for injured spinal cord revascularization

Ljubodrag Minić1, Branko Đurović2,3, Milan Lepić1,2, Milan Spaić1, Goran Pavličević1,5, Nenad Novaković1, Nemanja Jačimović1, Lukas Rasulić2,3

1Military Medical Academy, Clinic for Neurosurgery, Belgrade, Serbia; 2University of Belgrade, Faculty of Medicine, Belgrade, Serbia; 3Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia; 4Zemun Clinical Hospital Centre, Department of Neurosurgery, Belgrade, Serbia; 5University of Defence, Medical Faculty of the Military Medical Academy, Belgrade, Serbia

SUMMARY
Introduction/Objective Increasing incidence of spinal cord injuries presents a very important issue. These patients are usually very young, treatment is very difficult, long, expensive, and, in general, of little success. The aim of this study was to evaluate the angiogenic potential of the omental graft in spinal cord revascularization after the injury.

Methods The study included 19 patients, who underwent a recurrent surgical procedure for pain syndrome or surgical complication, and one patient in whom angiography revealed no flow in the distal part of an omental graft.

Results Our study confirmed angiogenic capabilities of the omental graft placed in the course of omentomyelopexy, for the injured spinal cord revascularization, macroscopically and histopathologically. Study results are limited due to including patients only when the postoperative period was complicated.

Conclusion Our study provides some invasive insight into the angiogenic capabilities, although further (likely less invasive) studies are needed to elucidate more clearly omental angiogenesis in spinal cord injury, and to include patients in whom the procedure went well.

Keywords: omentum; omentomyelopexy; spinal cord injury; angiogenesis; revascularization

INTRODUCTION

Injuries of the vertebral column, spinal cord, and cauda equina are present in 0.7–4% of all traumatic injuries, and 6.3% of traumatic injuries of the skeletal system, and their frequency increases mainly due to traffic accidents [1]. According to the data from Vietnam, missile-caused injuries of these structures were considered to appear in only 1%, although more current results suggest a far more frequent incidence of about 17% of missile injuries during the global war on terrorism [2, 3]. Although increasing incidence of spinal cord injuries (SCI) presents a very important issue, the most important one is the very nature of the injury. These patients are usually very young (approximately 20 years old), treatment is very difficult, long, expensive and, in general, of little success [4, 5].

Development of spinal fusion enabled the vertebral column to be stabilized after the injury, but very little to no improvement was achieved in SCI treatment [6]. Recently, the debate was re-sparked once again, as numerous treatment options have been developed recently, although their impact on spinal cord recovery after injury remained questionable [7].

The role of omental transposition for the brain and spinal cord vascularization was first mentioned in the mid-70s, by Goldsmith et al. [8, 9], and, since then, many authors have suggested various implementations of the omentum in both SCI and degenerative disease of the spine [10, 11, 12].

Due to omental richness in blood and lymphatic vessels and the ability to coalesce the injured area with capillary ingrowth during the first four to six hours, the omentum presents theoretically ideal tissue to revascularize the damaged spinal cord [13]. Omentomyelopexy is a surgical procedure to connect the great omentum with a nearby organ, which induces the arterial circulation in the omental graft, thus causing the arterial circulation improvement in the target organ [14, 15]. Herewith, we have tried to encourage omental transposition for SCI through omentomyelopexy, by evaluating the angiogenic potential of the omental graft in spinal cord revascularization after the injury.

METHODS

Study group and inclusion criteria

The study included 19 patients who underwent a recurrent surgical procedure for pain syndrome or surgical complication [infection, meningooentrechocle or cerebrospinal fluid (CSF) fistula], and one patient in whom angiography
revealed no flow in the distal part of the omental graft. The initial group of patients consisted of 100 patients (89 male and 11 female), treated with omentomyelopexy due to the missile-caused SCI neurological deficit at the Department of Neurosurgery of the Military Medical Academy in Belgrade, Serbia, during a five-year period (1993–1997).

Patients included in the study fulfilled all the criteria: decompressive surgery performed for missile-caused spinal cord injury; omentomyelopexy performed for stable neurological deficit, after initial decompressive surgery; recurrent surgery for pain syndrome or complication of omentomyelopexy.

The purpose of omentomyelopexy is angiogenesis of the damaged spinal cord, using the multipotent organ of the abdominal cavity, to provide revascularization, and to create adequate conditions for damaged spinal cord remyelization. This would all lead to nerve impulse propagation reestablishment, and consequent neurological improvement [16].

Postoperative pain syndrome was present in seven patients, and it appeared two to five years after the surgery. All the patients suffered from missile injuries of the spinal cord ranging between the T10 and the L2 spinal levels. After the injury, initial treatment included decompressive laminectomy and evacuation of bony fragments from the spinal canal, which was followed by omentomyelopexy 4–17 months after the initial surgery. The treatment option for these patients was microsurgical approach to the dorsal root entry zone (DREZ-otomy) [17].

Meningoomentocele developed in five patients, CSF fistula developed in three, and an infection of the neurosurgical site occurred in three patients. Reoperation was indicated to resolve these complications [18].

RESULTS

Direct intraoperative observation

Surgical treatment of complications also allowed a look into the surgical site to observe and evaluate the omentomyelopexy angiogenesis in vivo. Macroscopic photos were taken, while the small part of the grafted omentum was excised and referred to histopathological analysis to assess the viability and vasculature of the grafted omentum [19].

Splenic artery angiography

Selective angiography of the splenic artery was performed during the early postoperative period (on the 10th day after the surgery) in three patients to determine the vascular competency and to evaluate early angiogenic capabilities of the omental graft. Anastomosis between the omental flap arteries and the vertebral and spinal artery was corroborated in one patient, which confirmed angiogenic capabilities of the transposed omentum [16]. One patient’s angiography revealed only abdominal blood vessels, although no signs of graft necrosis were present; a revision was performed only to confirm the graft vitality and blood flow persistence.

Macroscopic appearance

In patients who were re-operated on due to infection, the omental graft appeared pale, volume was reduced to about 50% of the initial value (mainly due to fatty tissue reduction, while the vascular structures were not significantly changed), and active bleeding from the graft surface was noted. On the other hand, re-operation revealed that CSF fistula or meningoomentocele induced no significant changes in the graft macroscopic appearance.

The omental graft in patients who underwent DREZ-otomy due to painful syndrome was also evaluated, and the results are presented in Table 1.

Histopathologic changes in the omental graft

Myxoid changes were present in the omental graft adipose tissue, the connective tissue in the mature lobular adipose tissue, the merging of the fiber striated musculature, the isles of lymphocytic infiltration due to inflammation, as well as histological changes of vascular structures. Newly formed, thin-walled blood vessels of irregular diameter and proliferation of the intima were present Perivascular connective tissue expansion was also present [19].

DISCUSSION

There is no definitive treatment for SCI. None of the treatment options have shown any significant influence to the functional outcome of these patients. Numerous

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ASIA assessment result</th>
<th>Time from injury to omentomyelopexy (months)</th>
<th>Time to DREZ-otomy after omentomyelopexy (months)</th>
<th>Omental graft vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>M</td>
<td>(C) sensory level T12</td>
<td>4</td>
<td>30</td>
<td>vital</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>(B) sensory level T12</td>
<td>9</td>
<td>26</td>
<td>atrophic</td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>(D) sensory level T12</td>
<td>10</td>
<td>33</td>
<td>vital</td>
</tr>
<tr>
<td>25</td>
<td>M</td>
<td>(A) sensory level T12</td>
<td>14</td>
<td>60</td>
<td>disintegrated</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>(C) sensory level T12</td>
<td>14</td>
<td>34</td>
<td>vital</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>(B) sensory level L2</td>
<td>17</td>
<td>36</td>
<td>atrophic</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>(B) sensory level T12</td>
<td>14</td>
<td>42</td>
<td>disintegrated</td>
</tr>
</tbody>
</table>
techniques, including stem cells, collagen implants, and electric devices have been proposed by authors, although not many studies have been performed in human population [20, 21, 22]. Functional outcome is the only parameter significant for the patient, but scientific interest is broader, and any indication of notable positive effect on the spinal cord repair and regeneration is considered to be of the greatest importance. Our study is unique for its two-way confirmation of the successful implantation of transposed omentum, the angiographic, and direct intraoperative observation [16, 17, 19]. An MRI study by Goldsmith et al. [23] was performed on cats, but also in a patient suffering from SCI, who had omental–collagen bridge reconstruction that connects the proximal and distal ends of the transected spinal cord. The patient in this paper has clinically progressed to the point where she can ambulate with the use of a walker. A spinal cord defect of 4 cm in length showed MRI signs of development of a longitudinal spinal cord connection in the area of the omental–collagen bridge. This study provides some insight into the interaction of the transposed omentum and the injured spinal cord.

Although functional recovery is not exclusively related to the observed and noted changes, the histopathologic and angiogenic capabilities are the basis of the recovery development.

CONCLUSION

Our intraoperative study confirmed angiogenic capabilities of the omental graft placed in the course of omentomyelopexy, for the injured spinal cord revascularization, although study results are definitely diminished due to including only patients in whom there were complications or pain syndrome. Further (likely less invasive) studies, which would include patients in whom the procedure went well, are needed to provide more insight into omental angiogenesis in SCI.

NOTE

The paper is a part of Dr. Ljubodrag Minić’s PhD thesis.

REFERENCES

3. Blair JA, Patzkowski JC, Schoenfeld AJ, Cross Rivera JD, Grenier SA. An MRI study by Goldsmith et al. [23] was performed on cats, but also in a patient suffering from SCI, who had omental–collagen bridge reconstruction that connects the proximal and distal ends of the transected spinal cord. The patient in this paper has clinically progressed to the point where she can ambulate with the use of a walker. A spinal cord defect of 4 cm in length showed MRI signs of development of a longitudinal spinal cord connection in the area of the omental–collagen bridge.

This study provides some insight into the interaction of the transposed omentum and the injured spinal cord.

Although functional recovery is not exclusively related to the observed and noted changes, the histopathologic and angiogenic capabilities are the basis of the recovery development.

CONCLUSION

Our intraoperative study confirmed angiogenic capabilities of the omental graft placed in the course of omentomyelopexy, for the injured spinal cord revascularization, although study results are definitely diminished due to including only patients in whom there were complications or pain syndrome. Further (likely less invasive) studies, which would include patients in whom the procedure went well, are needed to provide more insight into omental angiogenesis in SCI.

NOTE

The paper is a part of Dr. Ljubodrag Minić’s PhD thesis.
Ангиогенетски потенцијал оментомијелопексије у реваскуларизацији повређене кичмене мождине

Љубодраг Минић1, Бранко Ђуровић2,3, Милан Лепић1,2, Милан Спаић4, Горан Павлићевић1, Ненад Новаковић1, Немања Јаћимовић1, Лукас Расулић2,3

1Војномедицинска академија, Клиника за неурохирургију, Београд, Србија;
2Универзитет у Београду, Медицински факултет, Београд Србија;
3Клинички центар Србије, Клиника за неурохирургију, Београд, Србија;
4Клиничко-болнички центар Земун, Одељење за неурохирургију, Београд, Србија;
5Универзитет одбране, Медицински факултет Војномедицинске академије, Београд, Србија

САЖЕТАК
Увод/Циљ Учестале повреде кичмене мождине су велики проблем. Повређени су обично врло млади, лечење је врло тешко, дуго, скупо и генерално безуспешно. Циљ овог рада је био да процени ангиогенетски потенцијал транспонираног оментума у реваскуларизацији кичмене мождине после повреде.
Методе Истраживање је обухватило 19 болесника, који су подвергнути поновном хируршком захвату због болног синдрома, хируршке компликације и једног болесника код којег ангиографија није показала проток у дисталном делу режња оментума.
Резултати Студија је потврдила ангиогенетске способности оменталног трансплантата за реваскуларизацију повређене кичмене мождине, макроскопски и хистопатолошки. Резултати студије су ограничени укључивањем само болесника са компликованим постоперативним током и реоперацијом.
Закључак Наша студија пружа одређени увид у ангиогенетске способности оментума, иако су потребне даље мање инвазивне студије како би се пружио бољи увид у оменталну ангиогенезу и укључили испитанци код којих је цео поступак прошао без компликација.
Кључне речи: оментум; оментомијелопексија; повреда кичмене мождине; ангиогенеза; реваскуларизација

DOI: https://doi.org/10.2298/SARH170626154M