REVIEW ARTICLE / ПРЕГЛЕД ЛИТЕРАТУРЕ

Is there a doctor on the plane? The distinctive conditions of cardiopulmonary resuscitation on commercial flights

Aleksandar Pavlović1, Slađana Trpković1, Slađana Andelić2, Nebojša Videnović1

1University of Priština temporarily seated in Kosovska Mitrovica, Faculty of Medicine, Kosovska Mitrovica, Serbia; 2Municipal Institute for Emergency Medical Care, Belgrade, Serbia

SUMMARY

Even today, when over 3.5 billion passengers travel on commercial flights each year, there is confusion about the duties and role of doctors and other licensed medical professionals volunteering to provide assistance to a passenger whose life is in jeopardy, especially when it comes to measures of cardiopulmonary resuscitation in the distinctive conditions of an airborne commercial aircraft. There are still no international, standardized guidelines, rulebooks, or instructions applying to all airlines when it comes to training and organizing the cabin crew, equipping emergency medical kits and covering the role of medical professionals volunteering their services in medical emergency situations. The aim of this work was to attempt to solve a common quandary among medical professionals when it comes to airplane travel.

Based on the available literature, national and regional guidelines and rulebooks of airlines, in accordance with the ethical and legal principles binding medical professionals, we have attempted to answer the major questions related to cardiopulmonary resuscitation on commercial flights. All aspects are covered — from a doctor volunteering to provide emergency medical care, through the marshalling of the cabin attendants, the availability of equipment, interaction with the flight captain and the captain's decision whether to perform an emergency landing, to the possibility of obtaining additional information from medical call centers on the ground and calling medical crews to the nearest airport.

Keywords: first aid; cardiopulmonary resuscitation; aircraft

INTRODUCTION

The data of the International Air Transport Association show that a total of approximately 3.5 billion passengers take commercial flights each year. In addition to the personal attitudes, perceptions and discomfort that may affect all flight passengers, air travel presents an additional dilemma for doctors and other medical professionals. Entering the passenger cabin of an aircraft, every doctor has asked him or herself at least once what his or her role would be if an acute medical condition requiring emergency medical care (EMC) were to appear in a fellow passenger during the flight.

In this paper, based on the available literature, national and regional guidelines and rulebooks of airlines, in accordance with the ethical and legal principles binding medical professionals, we want to answer the most pressing issues surrounding the execution of cardiopulmonary resuscitation (CPR) measures during commercial flights from every aspect: a doctor volunteering to provide EMC, organizing the cabin crew, the availability of CPR equipment, interaction with the flight captain and the captain's decision whether to perform an emergency landing, to the possibility of obtaining additional information from medical call centers on the ground and calling medical teams waiting at the nearest airport.

EPIDEMIOLOGICAL DATA

The absence of standardized protocols, international regulations, or central registers greatly hinders the reviewability and availability of information on EMC on commercial airline flights. Therefore, the rate of occurrence of such incidents is difficult to ascertain, which impedes epidemiological research on the topic [1]. Only serious processing of said data by international air travel organizations would pave the way for adopting international standards on the equipment necessary in an EMC kit, training for the cabin crew in providing medical assistance, and protocols to assess the health of the passenger patient. In view of the current absence of these standards, airlines are at liberty to issue internal guidelines whose foundation in the expert administering of EMC often leaves something to be desired [2].

Data on the frequency of urgent medical conditions on commercial flights vary. Though thought to be the safest way to travel, the specific environment of an airplane cabin leads to physical and psychological stress in some
passengers, which can act as a trigger for various emergency medical conditions, especially if the passenger is also chronically ill [3].

From 2002 to 2007, there was an anonymous survey among 32 European airlines about the rate of occurrence of medical incidents on commercial flights [3]. Of the total number of incidents (10,189), syncope was the most common medical condition reported (53.5%), followed by gastrointestinal disorders (8.9%) and cardiac conditions (509 cases, 4.9%) [3, 4]. In contrast, Qureshi and Porter [4] point out that the exacerbation of existing conditions (usually respiratory) is the most common medical event emerging during flight. Acute events requiring surgical care are rare on commercial flights. Thrombosis appeared in 0.5% of cases in the said study, appendicitis in 0.25%, while gastrointestinal hemorrhage occurred in under 0.1% of the cases [3].

By the year 2030, projections show, half of all passengers on commercial flights will be over the age of 50. The rising age of air travelers (often indicative of comorbidity), the stress due to fear of flying, environmental changes in the passenger cabin (temperature, humidity, and pressure), the tight quarters for sitting, the ingestion of alcohol and some medication, and flight delays may also be triggers for emergency medical conditions onboard an aircraft [5]. Though urgent medical states are relatively infrequent during flights, they have a deep impact on other passengers and cabin crews, and may also have an operational impact on the flight itself, resulting in high economic cost.

The incidence of a passenger needing a medical intervention in-flight is one in 10,000 to 40,000 [6]. Cardiac arrest (CA) occurs in one in five to ten million passengers in-flight. Annually, around 1,000 passengers die during commercial flights [7, 8].

EQUIPMENT AND MEDICATION AVAILABLE ONBOARD

There is still no international standardization of the equipment and medication necessary for in-flight EMC. In the United States of America (USA), the US Federal Aviation Administration (FAA) requires every plane with over 12 seats used for commercial flights to have CPR equipment, which includes an automated external defibrillator (AED), advanced airway management equipment and intravenous drugs. In Europe, there is still no legal regulation – most European airlines have AEDs, some only carry them on intercontinental flights, but there are those with no CPR equipment onboard. Unfortunately, there is no law obligating air carriers in Europe to include an AED in their emergency medical kits, though AEDs have become a part of basic life support measures (BLS – CPR) [3]. If the AED has an electrocardiography (ECG) monitor, it can be used to monitor cardiac rhythm, for example in patients with syncope, chest pain or arrhythmia. The use of AEDs on commercial flights has proven safe and efficient. Ventricular fibrillation is the most common ECG-registered CA rhythm and it can be successfully treated only with early defibrillation [9].

<table>
<thead>
<tr>
<th>Table 1. Content of first-aid kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Equipment</td>
</tr>
<tr>
<td>- bandages (assorted sizes);</td>
</tr>
<tr>
<td>- burns dressings (unspecified);</td>
</tr>
<tr>
<td>- wound dressings (large and small);</td>
</tr>
<tr>
<td>- adhesive dressings (assorted sizes);</td>
</tr>
<tr>
<td>- adhesive tape;</td>
</tr>
<tr>
<td>- adhesive wound closures;</td>
</tr>
<tr>
<td>- safety pins;</td>
</tr>
<tr>
<td>- safety scissors;</td>
</tr>
<tr>
<td>- antiseptic wound cleaner;</td>
</tr>
<tr>
<td>- disposable resuscitation aid;</td>
</tr>
<tr>
<td>- disposable gloves;</td>
</tr>
<tr>
<td>- tweezers: splinter;</td>
</tr>
<tr>
<td>- thermometers (non-mercury)</td>
</tr>
<tr>
<td>2 Medications</td>
</tr>
<tr>
<td>- simple analgesic (may include liquid form);</td>
</tr>
<tr>
<td>- antiemetic;</td>
</tr>
<tr>
<td>- gastrointestinal antacid, for airplanes carrying more than 9 passengers;</td>
</tr>
<tr>
<td>- anti-diarrhoeal medication, for airplanes carrying more than 9 passengers;</td>
</tr>
<tr>
<td>- antihistamine</td>
</tr>
<tr>
<td>3 Other</td>
</tr>
<tr>
<td>- a list of contents in at least two languages (English and one other); this should include information on the effects and side effects of medications carried;</td>
</tr>
<tr>
<td>- first-aid handbook, current edition;</td>
</tr>
<tr>
<td>- medical incident report form;</td>
</tr>
<tr>
<td>- biohazard disposal bags</td>
</tr>
<tr>
<td>4 An eye irrigator, whilst not required to be carried in the first-aid kit, should, where possible, be available for use on the ground</td>
</tr>
</tbody>
</table>

Also, there is vast divergence between the contents of EMC equipment in European national airlines and in low-cost air carriers. The International Air Transport Association, the Aerospace Medical Association, and the International Civil Aviation Organization have an agreement about the need to standardize medical equipment in all air carriers, but it is yet to be put into practice, and the kits display a miscellany of equipment and drugs. There should be separate first-aid kits for minor medical interventions, distinct from emergency medical kits [2]. The European Aviation Safety Agency recommends in its “unofficial courtesy document” an itemized first-aid (Table 1) and emergency medical kit (Table 2) to all countries in Europe [10, 11].

In the USA, per FAA regulations, there may be no commercial flight if the aircraft lacks an emergency medical kit or AED. A doctor may ask the cabin crew for additional equipment (e.g. a glucometer) or drugs, and they may procure them from the passengers [2].

A rulebook on public air transport and non-commercial flight published in the Official Gazette of the Republic of Serbia mentions first-aid and emergency kits, but does not list what they should contain. Every aircraft must have one first-aid kit for every 100 installed passenger seats. Aircraft with maximum operational passenger seating configurations exceeding 30 seats must have an emergency medical kit if any point on the planned travel route is more than 60 minutes’ flight, at normal cruising speed, from an airport that can be expected to have adequate expert assistance available. Only a properly trained individual may administer medication. The emergency medical kit must be protected from dust, humidity, and unauthorized access, and must be replenished regularly [12].
Federal laws set forth in the Aviation Medical Assistance Act of 1998 ensure limited protections and guidelines for doctors and other medical professionals volunteering their assistance to passengers in distress during a flight. There has been no information released to date of a physician being sued for malpractice over assistance to a passenger in distress aboard a flight [14]. On the other hand, many countries have so-called ‘good Samaritan laws’ that protect people of good faith, even medical workers acting outside their workplace, in case of any omissions while providing EMC [15]. In our country, the Code of Professional Ethics of the Serbian Medical Chamber regulates the role of physicians in extending EMC outside their workplace. Article 6, which deals with urgent medical assistance, reads, “If the patient’s life is threatened, the doctor is duty bound to provide EMC without delay, within his ability and expert knowledge. A doctor may not decline to provide EMC which is in line with his expert training regardless of whether he is on duty or not and regardless of whether he has been expressly asked to help” [16].

If the passenger in distress needs to be monitored during the flight and if treatment must be administered, the volunteering doctor should stay by the patient’s side throughout the flight. A doctor may note his or her activities and the administered treatment on a special form provided in the aircraft or, if this is not available, on any piece of paper. When the aircraft lands, the volunteering doctor hands over the patient to medical staff on the ground, who will transport the patient to a suitable medical facility [2].

PERFORMING CPR DURING FLIGHT

Performing CPR measures onboard a plane during a commercial flight has its peculiarities due to the specific environment, organizational structure, and decisions that will have repercussions on the flight path itself and the landing. The European Resuscitation Council proposes guidelines for in-flight CPR in its latest recommendations, released in October 2015 [7, 8].

The factors that contribute to the success of CA patient survival rates during commercial flights are as follows: awitnessed event, an expected occurrence in the confined space of an airplane; cabin crew trained in BLS – CPR; use of an AED in CPR in-flight, which secures the return of spontaneous circulation (ROSC) until arrival at hospital in 30–50% of cases; presence of medical professionals/doctors among the passengers and proficient and timely execution of CPR measures.

If a CA occurs in-flight, the physician passenger should immediately identify him or herself to the cabin crew and state his or her professional medical qualifications, following the moral, ethical, and legal principles mentioned earlier. If there are multiple healthcare worker volunteers, a team approach should be used. The volunteers should exchange information to assess everyone’s level of expertise and specialization so that a leader can be chosen.

Unfortunately, experience shows that, in Serbia, doctors of many specializations who do not frequently encounter this type of pathology often have scant knowledge of CPR.
Anesthesiologists, cardiologists, and emergency medicine specialists are the most qualified to perform CPR measures. Luckily, in recent years, thanks to the introduction of the Bologna system and changes to the curriculum of university medical studies, first-year medical students gain knowledge in BLS – CPR, which they build on with advanced life support (ALS – CPR) training in later years of studying, in the subjects of Surgery, Anesthesiology, Internal Medicine, Emergency Medicine, and Pediatrics. Also, ongoing medical education mandatory for all healthcare workers in the Republic of Serbia gives many doctors the opportunity to gain new and refresh old theoretical knowledge and manual skills in CPR. CPR is thus slowly gaining its merited position in medicine. In the modern world, BLS – CPR is part of every individual’s basic education.

Performing CPR on a plane is constrained due to the confined space. The recipient should therefore immediately be moved to the widest area of the aircraft which permits the execution of CPR measures. This is most often the area around exits, the galley, or the official cabin crew area. Coordinating with the cabin crew, organize the most qualified crew members to assist in the CPR measures directly. The figures are that cabin staff is trained in BLS – CPR in 73–88% of cases. The cabin and flight crew must renew their CPR and AED licenses every two years [9].

Begin chest compressions without delay. Ask for all available CPR equipment from cabin crew. Provide oxygen with a resuscitation bag mask. Continue chest compressions and artificial ventilation (ratio 30:2) throughout, even while placing AED electrodes [17, 18]. Turn on AED and follow the visual/voice instructions. If there is equipment for endotracheal intubation, manage the airway using the endotracheal tube only if you are fully trained in this manual skill, minimizing interruption of chest compressions [19, 20]. Otherwise, continue artificial respiration using resuscitation bag mask. If the EMC kit contains drugs, administer epinephrine and amiodarone, based on the European Resuscitation Council recommendations from 2015. Consider the 4H and 4T causes of CA, and if any are present, try to counter them during CPR measures, as these causes are potentially reversible [21, 22].

ROSC during CPR is indicated by a returning pulse in the large blood vessels (carotid arteries) and “signs of life” – attempting to breathe, coughing, opening of the eyes, bodily movements [23, 24]. If these “signs of life” fade with the cessation of chest compression, it is a false ROSC caused by sound performance of CPR measures and the resuscitation should be continued immediately. Only a doctor may declare CPR unsuccessful, and even then only if certain signs of death are present; asystole has been present for over 20 min despite ALS measures and there are no reversible causes; an assessment has been made that all further CPR would be futile and useless [25, 26].

Airlines are increasingly using the services of remote CPR centers like Medair or The First Call, which provide round-the-clock physician consultations in their call centers [2]. If the volunteering medical professional on the flight asks for this kind of support, the cabin crew can provide it via satellite phone.

DECISION TO DIVERT AND LAND

The decision to change course and land the plane at the nearest airport belongs to the pilot, who makes it based on the advice of the medical professional, depending on the state of the patient and the need for urgent medical treatment that cannot be provided onboard (acute coronary syndrome, stroke, sudden and protracted change in mental status), available resources (equipment, medication, medical staff), the distance to the nearest airport, weather, etc. If a passenger is discovered to have died (e.g. in their sleep) or the CPR is declared unsuccessful, diversion of the flight is not recommended [7].

If the patient is unstable and needs EMC, the doctor may suggest an emergency landing at the nearest airport in order to secure expert medical assistance. Landing is considered in consultation with medical experts on the ground, and the pilot makes the final call. An urgent change in flight path and setting the aircraft down at the nearest airport is necessary in 2.4–7.3% of all incidents of this kind, most often due to anginal distress (22%), stroke (11.3%) or seizure (9.4%), while only one in four patients require additional treatment in a hospital [3]. Ruskin et al. [27] suggest landing in case of persistent chest pain, difficulty in breathing, and strong abdominal pain. Gendreau and DeJohn [28] add to the list stroke, protracted persistent loss of consciousness, multiple seizures, and serious agitation.

When the aircraft is on an intercontinental overseas flight or when flying over vast uninhabited areas, landing is not possible until the area is cleared.

Only a doctor can confirm the death of a passenger onboard. If there is no doctor onboard and the cabin crew performs the resuscitation, even with the assistance of a nurse/medical technician, and the resuscitation fails, the aircraft should land as soon as possible so a medical team at the nearest airport can either continue resuscitation measures or declare death [7].

The emergency landing itself can be very expensive, costing from $3,000 to $100,000 depending on the size of the plane, the extra fuel used, and compensation to passengers for the delay, and may entail long-term consequences [29].

Additional information about the role of the physician in CPR is available in the Doctor on Board brochure, published in 2006 by Lufthansa and Austria Airlines [7].

CONCLUSION

The presence and expert assistance of a doctor in providing CPR in-flight raises survival rates, even though no international standardized protocols, equipment, drugs, or cabin crew training currently exist. Based on the available literature and the varying national recommendations, the authors of this paper have tried to highlight the importance of introducing standards in this area which would fully cover the ethical and legal circumstances faced by the medical professional passenger and, on the other hand, enhance the safety of the passenger in a life-threatening state.
REFERENCES