Detection of carbapenemase genes in Klebsiella pneumoniae isolates

Mira Mihajlović-Ukropina1,3, Anika Trudić2,3, Zora Jelesić1,3, Deana Medić1,3, Biljana Milosavljević1,3, Branka Zivlak1,3

1Institute of Public Health of Vojvodina, Center for Microbiology, Novi Sad, Serbia; 2Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia; 3University of Novi Sad, Faculty of Medicine, Serbia

SUMMARY

Introduction Klebsiella pneumoniae is one of the leading causes of serious hospital-acquired infections worldwide among Enterobacteriaceae species. It is the most common producer of carbapenemases in many parts of the world.

Objective The aim of the study was to determine which enzymes were responsible for resistance to carbapenems in Klebsiella pneumoniae strains isolated at the Centre of Microbiology of Public Health Institute of Vojvodina.

Methods A total of 29 Klebsiella pneumoniae non-duplicated strains resistant to at least one carbapenem isolated from clinical samples of hospitalized patients between November 1st 2013 and April 30th 2014 were studied. The species identification and susceptibility were done using VITEK 2 (bioMérieux, Marcy-l’Étoile, France) system. Phenotypic conformation of carbapenemase production was done by double-disc synergy test. PCR technique was performed for detection of genes encoding production of carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-48).

Results Isolates of Klebsiella pneumoniae resistant to at least one carbapenem showed positive on double-disc synergy test between meropenem and dipicolinic acid. All strains positive in phenotypic test contained blaNDM gene. In isolates resistant only to ertapenem, neither production of carbapenemases nor presence of genes encoding these enzymes were detected. Among these isolates, nine produced extended-spectrum β-lactamase.

Conclusion The presence of NDM metallo-β-lactamase was determined in all Klebsiella pneumoniae isolates resistant to at least one carbapenem.

Keywords: Klebsiella pneumoniae; carbapenem-resistance; NDM β-lactamase

INTRODUCTION

Enterobacteriaceae are one of the leading causes of both community- and hospital- acquired serious infections in humans that are associated with increased morbidity and mortality rates and healthcare costs. Escherichia coli and Klebsiella pneumoniae are responsible for the majority of these infections including urinary tract infections, septicemia, pneumonia, peritonitis, meningitis, and device-associated infections [1]. They are often multidrug resistant (MDR), and infections caused by these strains are a formidable problem to clinicians because therapeutic options are often very limited [2]. Carbapenems had been antibiotics of choice for the treatment of severe infections caused by MDR strains until 1990s, when the first carbapenemase producer in Enterobacteriaceae was identified [3]. After that, other types of enzymes that hydrolyze carbapenems were detected and reported worldwide [4]. Emergence and spread of carbapenemase-producing Enterobacteriaceae further reduced options for effective treatment of these infections.

Resistance to carbapenems is a result of production of enzymes that belong to the following three classes of β-lactamases: Ambler class A, B, and D β-lactamases [5]. Among class A β-lactamases, the most clinically significant is Klebsiella pneumoniae carbapenemase (KPC) [6]. Class B β-lactamases or metallo-β-lactamases are mostly of the IMP, VIM, and most recently of the New Delhi metallo-β-lactamase (NDM) type [7]. The most important types of class D are OXA-48-like enzymes [8]. Most of these enzymes were identified in MDR Klebsiella pneumoniae, but distribution and prevalence vary widely in different regions [9].

OBJECTIVE

The aim of this study was to determine which enzymes were responsible to resistance to carbapenems in clinical isolates of Klebsiella pneumoniae.

METHODS

The study was conducted at the Center for Microbiology of Public Health Institute of Vojvodina. A total of 29 non-duplicated strains of Klebsiella pneumoniae resistant to at least one carbapenem were isolated from clinical
samples including blood (nine), urine (nine), wound swab (eight), and tracheal aspirate (three) of patients hospitalized on the various wards of Clinical Centre of Vojvodina and Institute of Child and Youth Health Care of Vojvodina between November 1st 2013 and April 30th 2014. Isolated strains were identified using VITEK 2 Compact system, GN cards (bioMérieux, Marcy-l’Étoile, France). To determine susceptibility to antimicrobial drugs and production of extended-spectrum β-lactamase (ESBL) VITEK 2 Compact system, AST-GN71 and AST-N240 cards were used according to Clinical and Laboratory Standards Institute guideline. Susceptibility to fosfomycin was tested by Etest strip (AB Biodisk, Solna, Sweden) using European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations (2013) [10, 11]. All isolates were tested for the presence of the most prevalent enzymes (KPC, VIM, NDM, OXA-48) and genes responsible for the resistance to carbapenems (Table 1). Phenotypic confirmation of carbapenemase production and interpretation of results were done by double-disk synergy test according to manufacturer’s instructions and EUCAST guideline [12], using tablets containing meropenem (10 μg), cloroxacillin, dipicolinic acid, boronic acid (Rosco Diagnostica Neo-Sensitabs, Taastrup, Denmark). Enhancement of the zone of inhibition in the area between meropenem disc and the inhibitor-containing disc was considered to be a positive result. Detection of genes encoding production of carbapenemases using PCR technique was performed as follows: extraction of total bacterial DNA was performed in a 2 mL tube containing 1.5 mL of bacteria in a tryptic soy broth culture. It was centrifuged at 13,000 rpm for five minutes, followed by discarding of the supernatant, and the pellets were suspended with 200 μL DNAse/RNase free water (Gibco, Invitrogen, Waltham, MA, USA). The suspension was vortexed briefly, then heated at 100°C for five minutes, followed by discarding of the supernatant, and 150 μL of supernatant was transferred to a new 1.5 mL tube and was ready for use.

PCR reaction was performed with MasterCycler personal (Eppendorf, Hamburg, Germany). The final reaction volume was 25 μL with 8 μL DNAse/RNase free water (Gibco, Invitrogen), 12.5 μL PCR Master Mix M752 (Promega, Fitchburg, WI, USA) and 0.5 μL of each primer. PCR reaction of four genes was performed as two separate multiplex reactions. First reaction included primers for bla_{NDM} and bla_{KPC}, and second one included primers for bla_{OXA-48-like} and bla_{VIM}. PCR cycling conditions for ndm and kpc reaction were one cycle at 95°C for five minutes, 30 cycles of 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 60 seconds, followed by one cycle at 72°C for three minutes, and holding stage at 4°C. PCR cycling conditions for oxa48-like and vim reaction were one cycle at 95°C for 5 minutes, 30 cycles of 95°C for 30 seconds, 58°C for 30 seconds, and 72°C for 60 seconds, followed by one cycle at 72°C for three minutes, and holding stage at 4°C. The PCR-amplified products were analyzed by 2% agarose (Fisher Scientific International, Inc., Hampton, NH, USA) gel electrophoresis and stained with ethidium bromide. Images were documented by a BioDocAnalyze (Biomera, Gottingen, Germany) system.

RESULTS

Table 2 shows results of susceptibility testing of 29 Klebsiella pneumoniae isolates resistant to at least one carbapenem.

Among carbapenems, ertapenem showed lower activity than meropenem and imipenem. Percentage of isolates resistant to ertapenem was higher compared to other carbapenems tested. All Klebsiella pneumoniae isolates were resistant to eight of 13 antimicrobial agents tested (Table 2). All isolates of Klebsiella pneumoniae resistant to all carbapenems tested were susceptible to colistin, only one isolate was resistant to fosfomycin, while 13 of 15 isolates were resistant to tigecycline (Table 3). Isolates of Klebsiella pneumoniae resistant to all carbapenems tested showed an enhancement of the zone of inhibition in the area between meropenem disc and the disc containing dipicolinic acid that indicated a metallo-β-lactamases production (Figure 1).

Table 1. Primers for detection of genes encoding carbapenemase production.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaKPC Fw</td>
<td>ATGTCACTGTATGCGGTCT</td>
</tr>
<tr>
<td>blaKPC Rw</td>
<td>TTTCAAGGCCCCTACTGCCC</td>
</tr>
<tr>
<td>blaVIM Fw</td>
<td>GATGGTTGTTGTGCGCAT</td>
</tr>
<tr>
<td>blaVIM Rw</td>
<td>CGAATGCCAGCACCAAG</td>
</tr>
<tr>
<td>NDM-For</td>
<td>GGGCAGTCGCTTCCAACGGT</td>
</tr>
<tr>
<td>NDM-Rev</td>
<td>GTAGTGTCAGTGTGCAGAT</td>
</tr>
<tr>
<td>OXA48A</td>
<td>TTTGCTGCATCGATATCGG</td>
</tr>
<tr>
<td>OXA48A</td>
<td>GAGCCTCTTGTGGTGAAGCG</td>
</tr>
</tbody>
</table>

Table 2. Susceptibility of Klebsiella pneumoniae to antimicrobial drugs.

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>Klebsiella pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of isolates tested</td>
</tr>
<tr>
<td>Amoxicillin/clavulanic acid</td>
<td>29</td>
</tr>
<tr>
<td>Tazobactam/piperacillin</td>
<td>29</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>29</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>29</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>29</td>
</tr>
<tr>
<td>Ceferpine</td>
<td>29</td>
</tr>
<tr>
<td>Meropenem</td>
<td>29</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>29</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>29</td>
</tr>
<tr>
<td>Amikacin</td>
<td>29</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>29</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 3. Susceptibility to colistin, fosfomycin, and tigecycline of Klebsiella pneumoniae isolates resistant to all carbapenems tested.

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>Klebsiella pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of resistant/tested isolates</td>
</tr>
<tr>
<td>Colistin</td>
<td>0/15</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>1/15</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>13/15</td>
</tr>
</tbody>
</table>
All strains positive in phenotypic confirmation test carried blaNDM gene encoding NDM β-lactamase detected by PCR technique (Figure 2).

In isolates resistant only to ertapenem, neither production of carbapenemases nor presence of genes encoding these enzymes were detected. Among these isolates, nine out of 14 were ESBL producers.

DISCUSSION

Klebsiella pneumoniae is one of the leading causes of serious hospital-acquired infections worldwide. Emergence of carbapenemase resistant isolates is of particular concern because infections caused by these strains are associated with therapeutic failure and high mortality rates. According to the European Survey on Carbapenemase-Producing *Enterobacteriaceae* working group report, *Klebsiella pneumoniae* has been the most common producer of carbapenemase in majority of European countries. KPC is the most frequently detected enzyme [13]. The first KPC-producing strain was isolated from clinical specimen in North Carolina in 1996 [14]. Subsequently, KPC producers have been reported worldwide causing outbreaks in United States, many European countries, China, and South America [2, 5, 15, 16, 17]. The most important and particularly problematic carbapenemase in the Ambler class B, with increasing detection in many geographic areas, is the metallo-β-lactamase NDM. It was first isolated in Sweden in 2008, from an Indian patient with urinary tract infection previously hospitalized in New Delhi [7].

Emergence and spread of carbapenemase producers were reported all over the world. Types of enzymes and their frequency of detection differ from country to country. In this study, in all *Klebsiella pneumoniae* strains resistant to at least one carbapenem tested for the presence of the most common carbapenemase, only NDM metallo-β-lactamase was detected. Strains producing this enzyme were isolated in many European countries, but their distribution was not as wide as that reported for KPC-β-lactamase [2]. The largest number of NDM positive isolates was reported in the United Kingdom. Most of these cases had a direct connection to the Indian subcontinent (i.e. India, Pakistan, and Bangladesh). Fewer NDM producers were detected in Denmark, Belgium, France, Austria, Italy, and Germany, which originated most probably from Balkan countries and the Middle East. According to surveillance report of European Center for Disease Prevention and Control, NDM-producing *Enterobacteriaceae* were isolated from persons who had received medical care in Serbia (Kosovo and Metohija), Montenegro, and Bosnia and Herzegovina [18]. Some data indicate that Balkan states and the Middle East are, in addition to the Indian subcontinent, endemic reservoirs for NDM producers [19, 20]. Several isolates were detected in some other countries such as the USA, Canada, China, Japan, and Israel, related to unknown origin [2].

Our results suggest that ertapenem was not appropriate carbapenem for detecting NDM β-lactamase producers because all isolates resistant only to ertapenem were negative in phenotypic confirmation and genotypic tests. Other authors also found low specificity of ertapenem in their studies [6, 21]. Carbapenem resistance is mainly the result of carbapenemase production, but other mechanisms, such as overproduction of ESBL and AmpC β-lactamase associated with porin loss, may cause decreased susceptibility to carbapenems [6, 22, 23]. In this study, among 14 *Klebsiella pneumoniae* isolates resistant only to ertapenem, ESBL production was determined in nine strains.

Carbapenemase resistant *Enterobacteriaceae* are usually resistant to a wide range of antimicrobial drugs. Plasmids carrying genes encoding carbapenemases often carry high number of genes that confer high level of resistance to other antibiotics and can be easily transferred to other bacterial strains and species [9, 20, 24].

The majority of carbapenem resistant *Klebsiella pneumoniae* isolates in this study were MDR, which is in agreement with other reports [9, 19, 20]. All isolates were resistant to β-lactam antibiotics (except meropenem and imipenem) and cotrimoxazole, and only one isolate was susceptible to ciprofloxacin. Lower but still high percentage of resistance to gentamycin and amikacin (75.8% and 68.9%, respectively) was detected. These results are similar to those of other investigations [25, 26]. The most effective antibiotic against all *Klebsiella pneumoniae* resistant to all
carbapenems tested in this study was colistin, followed by fosfomycin. Resistance to tigecycline was detected in almost all isolates tested. Many authors reported very good activity or low percentage of resistance to colistin and fosfomycin. None of the studies reported as high resistance to tigecycline as we have found in our isolates [25, 26].

Treatment of infections caused by MDR Klebsiella pneumoniae is a formidable therapeutic problem because there are few potentially effective antibiotics, such as colistin, tigecycline, fosfomycin, and aminoglycosides [27]. Several studies found higher rate of positive outcomes in patients when combination therapy with two or three antibiotics, including colistin, tigecycline, and fosfomycin, was used [28, 29]. Therefore, combination therapy for the treatment of severe infections caused by MDR isolates is recommended.

CONCLUSION

According to the results obtained, presence of NDM metallo-β-lactamase in all Klebsiella pneumoniae isolates resistant to at least one carbapenem was determined. Almost all isolates were multidrug resistant. In order to prevent emergence and spread of multidrug resistant species, it is mandatory to identify carbapenemase-producing isolates and determine mechanisms of resistance to carbapenems in routine laboratory work.

REFERENCES

11. EUCAST guidelines for detection of resistance mechanisms and specific resistance of clinical and/or epidemiological importance. European Committee on antimicrobial susceptibility testing. Version 1.0, Dec 2013.
25. Filopina J, Baneree T, Anupurba S. Antimicrobial resistance pattern of multidrug-resistant Enterobacteriaceae (MDRE) isolated from clinical samples with special reference to carbapenemase

Доказивање гена резистенције на карбапенеме код изолата Klebsiella pneumoniae

Мира Михајловић-Укропина1,3, Аника Трудић2,3, Зора Јелесић1,3, Биљана Милосављевић1,3, Бранка Зивлак1,3
1Институт за јавно здравље Војводине, Центар за микробиологију, Нови Сад, Србија;
2Институт за плућне болести Војводине, Сремска Каменица, Србија;
3Универзитет у Новом Саду, Медицински факултет, Србија

КРАТАК САДРЖАЈ

Резултати Сви изолати Klebsiella pneumoniae резистентни најмање на један карбапенем испољили су синергизам између меропенема и дипиколиничке киселине у фенотипском потврдном тесту. Код свих изолата позитивних у овом тесту доказано је присуство blaNDM гена, док код изолата резистентних само на ертапенем није потврђена продукција карбапенемаза нити присуство гена који кодирају њихову синтезу. Бета-лактамазе проширеног спектра доказане су код 9 од 14 изолата резистентних само на ертапенем.

Закључак Присуство ензима NDM метапол-β-лактамазе доказано је код свих изолата Klebsiella pneumoniae резистентних најмање на један карбапенем. Про dukција бета-лактамазе проширеног спектра доказана је код 9 од 14 изолата резистентних само на ертапенем.

Кључне речи: Klebsiella pneumoniae; резистенција на карбапенеме; NDM β-лактамаза

Примљен • Received: 13/05/2015
Прихваћен • Accepted: 05/06/2015