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Decision tree analysis for prostate cancer prediction
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SUMMARY

Introduction/Objective The use of serum prostate-specific antigen (PSA) test has dramatically increased
the number of men undergoing prostate biopsy. However, the best possible strategies for selecting ap-
propriate patients for prostate biopsy have yet to be defined.

The aim of the study was to develop a classification and regression tree (CART) model that could be used
to identify patients with significant prostate cancer (PCa) on prostate biopsy in patients referred due to
abnormal PSA, digital rectal examination (DRE) findings, or both, regardless of the PSA level.

Methods The data on clinicopathological characteristics regarding prebiopsy assessment collected from
patients who had undergone ultrasound-guided prostate biopsies included the following: age, PSA, DRE,
volume of the prostate, and PSA density (PSAD). The CART analysis was carried out using all predictors
identified by univariate logistic regression analysis. Different aspects of predictive performance and
clinical utility risk prediction model were assessed.

Results In this retrospective study, significant PCa was detected in 92 (41.6%) out of 221 patients. The
CART model had three splits based on PSAD, as the most decisive variable, prostate volume, DRE, and
PSA. Our model resulted in an 83.3% area under the receiver operating characteristic curve. Decision
curve analysis showed that the regression tree provided net benefit for relevant threshold probabilities

Received « MpummeHo:
November 27,2017

Accepted - MpuxeaheHo:
May 18,2018

Online first: June 1, 2018

Correspondence to:

Miroslav M. STOJADINOVIC
Deparment of Urology

Clinic of Urology and Nephrology
Kragujevac Clinical Centre

Zmaj Jovina 30

34000 Kragujevac, Serbia
midinac@gmail.com

compared with the logistic regression model, PSAD, and the strategy of biopsying all patients.
Conclusion The model helps to reduce unnecessary biopsies without missing significant PCa.
Keywords: prostatic neoplasms; prostate-specific antigen density; decision trees

INTRODUCTION

Prostate cancer (PCa) is the second most fre-
quently diagnosed malignancy and the sixth
leading cause of cancer-associated mortal-
ity in men worldwide [1]. The use of serum
prostate-specific antigen (PSA) test dramati-
cally increased the number of men undergoing
prostate biopsy over the last decades. However,
PSA and the digital rectal exam (DRE) have
moderate sensitivity but low specificity for can-
cer diagnosis, potentially causing unnecessary
treatment complications with prostate biopsy.
Furthermore, overdiagnosis and overtreatment
of indolent PCa is a serious health issue in most
developed countries [2].

Efforts have been made to decrease the num-
ber of unnecessary biopsies. Multiple PSA de-
rivatives have been advanced as early detection
biomarkers, including age-specific PSA refer-
ence ranges, PSA density (PSAD), PSA velocity,
transition-zone (TZ) PSAD, percentage of free
PSA, or the presence of hypoechoic lesions on
transrectal ultrasound [3-7]. The most advanced
blood-based PCa biomarkers include [-2]proP-
SA, %p2PSA, Prostate Health Index (PHI),
4-kallikrein panel or urine-based biomarkers
such as PCa gene 3 (PCA3) and TMPRSS2:ERG
(T2:ERG) gene fusions [8, 9, 10]. Numerous
multivariate models based on the combination
of various clinical and demographic variables
expressed by nomograms [7, 11, 12, 13], artifi-
cial neural networks [5, 14], risk calculators [15,

16, 17] provide better clinical performance than
the results obtained by individual predictors [5,
7, 16]. Although they are reported to produce
useful results, these approaches are still in the
evaluation phase and they are not used in daily
clinical practice. Furthermore, only limited re-
ductions in the rate of unnecessary biopsies are
possible. Therefore, best possible strategies for
selecting appropriate patients for prostate biopsy
have yet to be defined.

Classification and regression tree analysis
(CART) has been applied in urology especially
for PCa in the prediction of aggressive PCa on
biopsy [18, 19], or bone scan positivity [20].
Chi-squared Automatic Interaction Detector
(CHAID) is one of the oldest tree classification
methods. The procedure is a graphic represen-
tation of a series of decision rules and selects a
useful subset of predictors or classifies subjects
into high- and low-risk groups. Furthermore,
the results of the CART analysis are presented
as a decision tree, which is intuitive and easier
to understand than the results of many other
statistical methods.

The aim of the study was to develop and
compare the predictive accuracy and clinical
usefulness of classification trees with that of
the traditional statistical method (logistic re-
gression — LR) and individual most important
predictor for predicting clinically significant
PCa on biopsy in patients referred due to ab-
normal PSA, DRE findings, or both, regardless
of PSA level.



METHODS
Patient population

This is a retrospective study carried out using the database
of 239 patients at the Kragujevac Clinical Centre, who had
undergone ultrasound-guided prostate biopsies, from Sep-
tember 2016 through September 2017. Patient referrals
were obtained in the course of routine clinical care, regard-
less of prostate-specific antigen level or clinical findings,
and not as part of a population-based screening trial. After
obtaining institutional review board approval, the collected
data on clinicopathological characteristics for each patient
regarding prebiopsy assessment included the following:
age, PSA, DRE, prostate volume, PSAD, total number of
cores taken, Gleason score, and number of positive core
biopsies. Exclusion criteria were patients with incomplete
data, and medical therapy known to affect PSA levels. The
primary outcome was the detection of clinically significant
PCa on biopsy. Clinically insignificant PCa was defined
histopathologically according to the Prostate Cancer Re-
search International Active Surveillance (PRIAS) inclu-
sion criteria for low-risk PCa: T1C/T2, PSA < 10 ng/ml,
PSAD < 0.2 ng/ml/ml, one or two positive biopsy cores,
and Gleason score < 6 [2].

A member of the urology team performed a DRE on all
the patients. The DRE was classified as normal or suspi-
cious/positive. At presentation, the serum PSA measurement
(UniCel DxI 600 Access Immunoassay System; Beckman
Coulter, Brea, CA, USA) was performed. Before the biop-
sy procedure, all the patients received a cleansing enema
and prophylactic broad-spectrum antibiotics. A Toshiba
(Aplio 300; Toshiba, Tokyo, Japan) ultrasound device with
a5-10 MHz probe was used to obtain ultrasound data and
prostate biopsy. All the patients underwent ultrasound-
guided prostate biopsy performed using an 18-gauge biopsy
instrument (Pro-Mag I 2.5, Md-Tech, Houston, TX, USA).
A median of 10 biopsy cores were obtained (range: 2-12
cores), and evaluated per each hospitals standard procedure
and by local pathologists. Prostate volumes were obtained by
measuring the gland in three dimensions, and volume was
estimated using the following formula: 0.52 [length (cm)
x width (cm) x height (cm)]. The PSAD was calculated by
dividing the serum PSA by the calculated prostate volume.

Statistical analyses

Descriptive statistics were used for demographic and base-
line characteristics. Univariate and multivariate LR were
used to identify and quantify the potential and indepen-
dent predictors of significant PCa with Backward-Wald
stepwise regression. The results of the regressions were
expressed in odds ratio with 95% confidence interval.

CRT classification tree
The CHAID analysis was carried out on the whole sam-
ple using all the predictors identified by the univariate LR

analysis. We selected the category of significant PCa as the
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category of primary interest in the analysis. For both signifi-
cance value for splitting nodes and merging categories, we
specified a default significance level of 0.05. The ¥* statistic
was calculated using the Pearson method. We checked “Al-
low resplitting of merged categories” within a node, which
allows the procedure to resplit merged categories if that pro-
vides a better solution. We controlled the stopping rules by
the maximum tree depth of three levels and the minimum
numbers of cases for nodes by specifying that the parent
node must have at least 20 cases and a child node at least
five cases. The optimal number of leaves was determined
by identifying the tree size that minimized the tree deviance
when 10-fold cross-validation was used in the derivation
sample. By comparing the classification rate of the entire
sample to the cross-validated classification rate, we can as-
sess the generalizability and stability of the classification tree.

Comparison of predictive models

For each model we calculated the area under the receiver
operating characteristic (ROC) curve (AUC), sensitiv-
ity, specificity, positive (PPV), negative predictive value
(NPV), accuracy, and calibration for the CHAID model.
The comparisons of AUC were performed using the meth-
od proposed by DeLong et al. [21].

Clinical usefulness was assessed by using the decision
curve analyses [22]. These analyses estimate a “net ben-
efit” for prediction models by summing the benefits (true
positives) and subtracting the harms (false positives). An
assumption is made that the identification of clinically sig-
nificant PCa would lead to biopsy. Net benefit is plotted
against threshold probabilities compared with the ‘Biopsy
for all’ and ‘Biopsy for none’ strategies. The interpretation
of a decision curve is that the model with the highest net
benefit should be chosen. We calculated the net benefit
in Excel using the recommended formula [22]. All other
analyses were performed using IBM SPSS Statistics, Ver-
sion 23.0 (IBM Corp., Armonk, NY, USA). Statistical sig-
nificance was set at p < 0.05.

RESULTS
Patients’ characteristics

A total of 221 patients were analyzed. PCa was detected in
100 (45.2%) patients, but significant PCa was detected in
92 (41.6%) patients. Table 1 shows the clinicopathological
characteristics of patients with/without significant PCa
included in the study. There were significant differences
in age, PSA levels, volume of prostate, PSAD, and DRE
findings between patients with or without significant PCa.

The logistic regression analysis

In a univariate analysis, all five risk factors displayed sig-
nificant correlation with significant PCa (Table 2). During
the multivariate analysis, three factors sustained their prog-

nostic significance (Table 2). The analysis demonstrated
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Table 1. Baseline patients’ clinicopathological characteristics (n = 221).

Stojadinovi¢ M. M. et al.

Characteristics All BPH/Insignificant PCa (n = 129) Significant PCa (n = 92) p
Age mean + SD, years 69.8+7.3 68.5+6.9 71.6+74 0.002
PSA median (IQR), ng/ml 11.2(15.1) 9.8 (8.4) 17.8 (42.3) 0.000
Volume prostate median (IQR), ml 49 (32.5) 55 (40) 44 (27) 0.003
PSAD median (IQR), ng/ml/ml | 0.24(0.41) 0.17(0.23) 0.43(0.72) 0.000
DRE abnormal n, (%) 53 (24) 14(10.9) 39 (42.4) 0.000
Number of biopsy cores | median (IQR) 10 (0) 10 (0) 10(0.75) 0.039
GS<6 n (%) 40(18.1) 8(3.6) 32(14.5) NA
GS=7 n (%) 25(11.3) 25(11.3) NA
GS 8-10 n (%) 35(15.8) 35(15.8) NA

PCa - prostate cancer; SD - standard deviation; PSA - prostate-specific antigen; PSAD - prostate-specific antigen density; IQR - interquartile range;

DRE - digital rectal examination; GS - Gleason score; NA — not applicable

Table 2. The logistic regression analysis of predictors for significant
prostate cancer

. Univariate analysis Multivariate analysis
Variables
OR (95% Cl) p OR (95% Cl) p

1.062

Age (1.022-1.104) | %002
1.025 1.020

PSA (1.012-1.038) 0.000 (1.007-1.033) 0.003
0.988 0.980

Prostate volume (0.978-0.998) 0.024 (0.967-0.992) 0.001
3.735

PSAD (1.870-7.458) | 0%
6.044 4.024

DRE (3.026-12.074) | 2990 | (1877-8.626) | OO0

PSA - prostate-specific antigen; PSAD - prostate-specific antigen density;
DRE - digital rectal examination; OR - odds ratio; Cl - confidence interval

that the PSA, volume of prostate, and DRE have strong
prognostic value of significant PCa (Table 2).

CHAID tree

A tree-based CHAID prediction model is shown in Figure
1. There are nine terminal and five non-terminal nodes,
resulting from three ‘if-then’ conditions. The most deci-
sive variable at the moment of classification was the PSAD,
which stratified the patients into four classes in relation to
the value: < 0.15, 0.15-0.24, 0.24-1.47, and > 1.47 ng/ml/
ml, respectively. Ultimate nodes (nodes 1 and 4) are also
terminal with low and very high prevalence of significant
PCa (10.6% and 86.4%, respectively). Node 2, associated
with PCa in 34.1% of cases, was further split on the basis of
the prostate volume being less than, equal to, or greater than
54 ml. Larger prostate was associated with low prevalence
of PCa (12.5%), compared to smaller (46.4%) ones. Finally,
the non-terminal node (5) split on the basis of the presence

of abnormal DRE, with more PCa (83.3%) cases when DRE
was abnormal. Node 3, associated with PCa in 57.3% of
the cases, was further split on the basis of the presence of
abnormal DRE. Abnormal DRE was associated with more
PCa (79.3%) compared to normal DRE (46.7%). Node 7
was further split on the basis of the PSA value: < 8.2 ng/ml,
8.2-11.2 ng/ml, and 2 11.2 ng/ml (terminal nodes 11, 12,
and 13). The misclassification rates of the entire sample
and of the cross-validated estimate were 21.3% vs. 29%. The
overall model prediction accuracy of the CHIAD model
was 78.7%, and it was higher in the absence of significant
PCa (90.7%) than in the significant PCa group (62%).

Diagnostic performance of PSAD at various cut-off
values

Since the CHAID analysis indicated that the PSAD was the
most useful variable in predicting significant PCa, what we
tried next was to define the optimum cut-off value for PSA
density. The diagnostic performance of different thresh-
olds for PSAD is shown in Table 3. If the PSAD cut-off
value was set at 0.15, which has been widely used for PCa
detection, the sensitivity and specificity would be 92.4%
and 45.7%, respectively; the number of patients requiring
biopsy could have been reduced to 155 (30%) from 221,
with a PCa detection rate of 92.4% (87/92). However, ac-
cording to our analysis, a PSAD of > 0.25 was considered
optimum because it gave the highest sum of sensitivity
and specificity.

Predictive performance for each of the modelling strat-
egies and PSAD is reported in Table 3. AUC for all the
models were shown to have moderate/good discriminatory
ability (77.8-83.3%) (Figure 2), and in pairwise compari-
son of receiver operating characteristic curves, the differ-
ence between the areas of the CHAID tree and the LR

Table 3. Diagnostic performance of prostate-specific antigen density at diverse cut-off values

PSAD cut-off value TP FN TN FP Sensitivity (%) Specificity (%) Biopsy spread (%) Missed (%)
0.07 92 0 14 115 100 10.85 6 0
0.10 90 2 19 110 97.83 14.73 10 2
0.15 85 7 59 70 92.39 45.74 25 8
0.18 82 10 64 65 89.13 49.61 33 1
0.21 79 13 72 57 85.87 55.81 38 14
>0.25 69 23 89 40 75 68.99 51 25

PSAD - prostate-specific antigen density; TP — true positive; FN - false negative; TN — true negative; FP - false positive
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Figure 1. A tree-based Chi-squared Automatic Interaction Detector prediction model

Table 4. Predictive performance of classification methods

Efficacy measure Classi.fic.ation me'.chod

PSAD Logistic regression | CHAID tree
AUC (95% €D 71 .757-'883.1) (72—723.3) (77.883—'38.9)
sensitivity (95% C) (24.323-’14.3) (39.45—060.6) (51 P 8)
Speciicty (95% C) | (g7 o6 0| (@15.933) | (343.95.1)
PPV (95% CI) (61 Z‘gg.z) (62.775—.35.5) 71 .862—'30.7)
NPV (95% CI) (58.261‘;3.1) (63.751—'728.1) (69.3333.4)
Accuracy (95%Cl) | 6 .67%;)4.4) (667—27'2.2) (72.77§3.9)

AUC - area under the curve; Cl - confidence interval; NPV - negative predic-
tive value; PPV - positive predictive value; PSAD - prostate-specific antigen
density; CHAID - Chi-squared Automatic Interaction Detector

model (5.3%) and the CHAID tree and the PSAD (5.5%)
were significant (p = 0.011, and p = 0.002, respectively),
and between LR and PSAD areas (0.2%) not significant
(p = 0.931). Graphical assessments of the CHAID model
calibration are presented in Figure 3. The model was well
calibrated (R? = 0.997).
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Figure 2. Receiver operating characteristic curves’analyses

PSAD - prostate-specific antigen density; LR - logistic regression;
CHAID - Chi-squared Automatic Interaction Detector
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Figure 3. Calibration in the Chi-squared Automatic Interaction Detec-
tor method (CHAID)

In the decision curve analysis (Figure 4a), both mod-
els predicting significant PCa provided net benefit for
threshold probabilities of approximately 11% or higher
as compared with the strategy of biopsying all patients, or
alternatively, biopsying no one. The CHAID model (red
line) leads to the higher net benefit compared with the LR
model (blue line) or the PSAD (green line). The reduction
in the number of unnecessary biopsies per 100 patients is
net of false negatives, without a decrease in the number of
patients with significant PCa who duly have PCa. Also, in
this case, the CHAID model (red line) outperformed the
LR model (blue line) or the PSAD (green line) for thresh-
old probabilities above approximately 12% and above
29% for PSAD (Figure 4b). For example, at a probability
threshold of 15% and 30%, the use of the model reduces
the number of unnecessary biopsies by 9 and 23 per 100
patients, respectively, without missing any significant PCa.

DISCUSSION

In the current study, we used the CART analysis to develop
a prostate biopsy decision algorithm in patients referred
due to an abnormal PSA or DRE finding, or both, regard-
less of the PSA level. The CART analysis selected PSAD
as an indication for further work-up in several subclasses.
Some common predictors (prostate volume, DRE, PSA)
may serve in further risk stratification. The CHAID model
has shown to have good discriminatory ability. It outper-
formed the logistic model and PSAD as an individual

Stojadinovi¢ M. M. et al.

predictor. Application of the model would lead to notably
superior clinical outcomes than the current strategy of
biopsying all men with elevated PSA, and consequently
resulted in the reduction number of unnecessary biopsies.

Previous existing models have established the criteria
associated with the higher risk of significant PCa. They
included age [7, 11, 12, 13, 15, 18, 19, 23], race [15, 23],
digital rectal examination [7, 11, 12, 13, 15, 16, 17, 23],
total PSA [5, 12, 13, 15, 16, 17, 19, 23], percentage of free
PSA [5, 12, 13], PSAD [7, 18, 19], PHI [11], prostate vol-
ume [11, 12, 16-19], PSAD of the TZ [5], TZ volume [5],
hypoechoic lesions on ultrasound [7, 17,19], biopsy his-
tory [11, 15, 16, 23] and family history [15]. A wide va-
riety of different combinations of predictive factors have
been identified. In line with previous studies, several of
those predictors have reached statistical significance in the
univariate or multivariate analysis or tree-based methods
in our study. However, many of these parameters did not
sustain their independent value. Nevertheless, according
to the analysis, PSAD was the most decisive variable at the
moment of classification. The PSAD has been suggested
to differentiate benign from malignant prostate disease
especially in cases belonging in the grey zone [3]. Although
there is controversy about the cut-off of PSAD, our result
showed that western reference (PSAD 0.15) has good sen-
sitivity (92.4%) and only 3% of patients would have been
missed, and at the same time 30% of unnecessary biopsies
would have been avoided. In studies with similar design
that included patients with serum PSA value of < 10 ng/ml,
PSAD greater or less than 0.158-0.165 was the main split-
ting criterion [18, 24]. However, these results do not sup-
port those of prior investigators such as Catalona et al.
[6], who reported that the commonly used PSAD cut-off
of 0.15 detected only 59% of cancers in men with normal
DRE and PSA value of 4-10 ng/ml. These disparities can
be explained by different populations and a diverse defin-
ing outcome. According to the findings of a recent study
in our circumstances, patients with PSAD values above
0.17 £ 0.06 should be included for biopsy [25].

We found that significant variables constructing the
CHAID model were different (prostate volume, DRE, PSA)
according to the PSAD level. In the patients with PSAD
between 0.15 and 0.24, we demonstrated that prostate vol-
ume was the only useful parameter. It is in concordance
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Figure 4. Decision curve analyses

PSAD - prostate-specific antigen density; LR - logistic regression; CHAID — Chi-squared Automatic Interaction Detector
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with many studies that have shown a reduction in PCa risk
with the increase in prostate size. The DRE is considered
to be mandatory in the diagnosis and staging of PCa. This
variable has reached clinical significance in some subclass-
es of our model, similar to other reports [7, 11, 12, 13, 15,
16, 17, 23]. Overall, this supports that clinical information
and laboratory tests are not of equal importance for pre-
dicting the probability of a PCa-positive biopsy result at
various PSA concentrations [24]. According to the PRIAS
criteria, we found 8% of insignificant PCa, which is not in
agreement with mathematical models that estimate that
23-42% of PSA-detected cancers are overdiagnosed [2, 26].

It was found that the accuracy of the present models
were higher than the accuracy of many earlier ones. Our
model resulted in an AUC of 83.3%, which is better than
many others (73-82%) [7, 11, 12, 13, 16, 19], and similar to
some other reports [9, 17]. However, metrics of accuracy
do not address the clinical value of a model. Net benefit is a
tool for evaluating the clinical implications of models [22].
However, determining a reasonable range of threshold
probabilities is a critical aspect of net benefit approaches
[27]. For PCa screening, a reasonable range of 10-40% was
defined [22]. According to this criterion, the net benefit
for the PSAD marker is equal to that for the “biopsy all”
strategy for threshold probabilities below approximately
30%. This means that the best clinical outcome would
be achieved by conducting the biopsy irrespective of the
PSAD results across relevant threshold probabilities. On
the other hand, in our decision curve analysis, we identi-
fied the range of threshold probabilities (> 11%) in which
our models were of value. Furthermore, the decision tree
is valuable because it defines two subgroups of patients
who have a very low possibility of being cancer: (a) men
who have PSAD below 0.15, and (b) men who have PSAD
0.15-0.24 ng/ml/ml, and prostate volume above 54 ml. In
comparison with other clinically relevant risk assessment
algorithms that showed a number of unnecessary biop-
sies, our model outperformed some [18], was comparable
to some [11], and inferior to others [9, 10]. Our model
showed excellent calibration but a correction for the mis-
classification might need to be made.

The limitation of this study resides in its retrospective
design, in a single tertiary center with a relatively small
patient cohort that restricted the generalization of the
rules. Secondly, we included only those variables that
were available to us. Because others advanced biomarkers
were not available, we were unable to assess their utility
in the current model. Furthermore, this analysis is limited
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by the bias introduced by false negative biopsies. Recent
studies have suggested that extended biopsy schemes and
MR-targeted biopsies have demonstrated superiority over
systematic biopsies for the detection of a clinically signifi-
cant disease [28]. Next, the criteria for insignificant PCa
are not generally accepted. A modern study suggests that
not all Gleason 3 + 4 patients will have the aggressive form
of the disease [29]. Finally, determination of prostate vol-
ume by transrectal ultrasound may vary considerably [30].
The lack of measurement precision of prostate volume has
prevented the widespread clinical acceptance of PSAD.
Nevertheless, to the best of our knowledge, to date, the
CHAID analysis has not yet been used in the prediction
of significant PCa in routine clinical settings. Our study
provides clear evidence that the statistical model could
be used in everyday clinical practice in order to decrease
the number of unnecessary biopsies without substantially
affecting the diagnosis of significant PCa. Furthermore,
our CART analysis had a very small numbers of splits (7
splits), unlike others, which can be easily applied in clini-
cal practice [19]. The prediction model represents another
step towards accurately estimating individualized risk of
PCa in a patient population lacking optimal prediction
procedures.

CONCLUSION

In summary, CART analysis chose PSAD for the identi-
fication of patients at minimal risk for a positive biopsy.
The model showed good discrimination, outperformed the
LR model, and was the most important individual predic-
tor. Despite favorable global metrics, PSAD has no clinical
implication across relevant threshold probabilities. This
prediction model could help avoid unnecessary biopsy
and reduce overdiagnosis and overtreatment in clinical
settings. However, before recommending its use in clinical
practice, a larger and more complete database may be used
to further clarify the magnitude of the model in terms of
prediction of significant PCa.
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AHanu3sa ctabna ognyumsarba y npegsuhary KapuuMHoma npocrate

Mupocnas M. CrojagnHoBuh? Munopag M. CrojagmHosuh?, lamjaH H. MaHTuhA'

'KnuHuukn uenTap ,Kparyjesay', KnuHuka 3a yponorujy u Hedponorujy, YponoLuko ogesbetrbe, Kparyjesau, Cpbuja;
*YHusep3uTeT y KparyjesLy, akynTeT MefnLMHCKNX Hayka, Kparyjesau, Cpbuja

CAXETAK

YBoa/Lum TecTrpatbe Ha aHTUreH cnelnduyaH 3a npocTa-
Ty (ACIM) ApamaTnyHo je moBucKno 6poj ocoba Ko Kojux ce
n3Boau broncuja npoctate. MehyTm, onTumasnHa cTpateruja
cenekuuje 6onecHuKa 3a buorncujy npocrate jow Huje fedu-
HucaHa. Linmb oBe cTyauje je Kpenparbe Mogena knacudmka-
LIMOHOT 1 perpecroHor ctabna ognyunsatsa (KPCO) kojv 61 ce
MOrao KOpUCTUTU y npeasuhatby CUrHUGUKAHTHIX KapLyHOMa
npoctate (PCa) Tokom broncuje npocTate, Kog 6onecHuKa ca
abHopmanHum ACTI, purutopekTanHum Hanasom (OPH), nnn
00a, He3aBUCHO of HuBoa ACT.

Mertopge MpukynibaHe cy cnegehe KNMHUYKONATONOLLKE Ka-
paKTepuCTIKe 6oNECHMKa KO KOjUX je YUnHbeHa YNTPa3ByKom
BoheHa TpaHcTeKTanHa 6roncuja npoctare: crapoct, ACM, IPH,
BOJIyMeH npocTaTte v ryctHa ACI (TACH). AHann3a KPCO je
n3BeAeHa Kopuiiherbem CBMX NPeanKTopa NAEHTUGUKOBAHYIX Y

DOI: https://doi.org/10.2298/SARH181127039S

YHUBapWjaTHOj NNOTUCTNYKO]j pPerpecoHoj aHanu3u. lNpoLereHn
Cy Pa3nMuUTK acnekT NepPopMaHCH 1 KIMHNYKE KOPUCHOCTM
npeAvKLMOHOTr Mogena.

PesynTatu Y 0BOj peTpOCNeKTUBHOj CTYANjU CUTHUGUKAHTHM
PCa cy ytBpheHu kog 92 (41,6%) op yKynHo 221 6onecHuKa.
Mogen KPCO nma Tpu HMBOa rpaHaka Ha OCHOBY BpeHOC-
1 TACT, Kao HajnpecyaHvje Bapujabne, BONyMeHa NpocTare,
[OPH »n ACT1. Haw mogen je noka3ao NoBpLUMHY UCNOA KpuBe
of 83,3%. AHanu3a KpriBe ofnyurBatba je mokasasa fa perpe-
CVIOHO CTabs10 y peneBaHTHOM Npary BepoBaTHoha npy»a HeT-
6eHednT y nopehery ca IOrnCTUYKAM PErpecrioH M MOZENOM,
TACI n cTpaTerujom nsBohera buoncuje Kog cBrx 60necHNKa.
3aksbyyak Mopaen nomaxe y CMakbetby HEMoTpedHMX Groncuja
6e3 nponyluTara 6mno Kojer curHudukaHTHor PCa.

KmbyuHe peun: Heonnasme NpocTaTe; rycTMHa aHTUreHa crne-
LUMGUUHOT 3a MPOCTaTy; CTabo oaNyUrBatba
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