
  

52
DOI: https://doi.org/10.2298/SARH181127039S

UDC: 616.65-006.6-076

Correspondence to:
Miroslav M. STOJADINOVIĆ
Deparment of Urology
Clinic of Urology and Nephrology
Kragujevac Clinical Centre
Zmaj Jovina 30
34000 Kragujevac, Serbia
midinac@gmail.com

Received • Примљено:  
November 27, 2017

Accepted • Прихваћено:  
May 18, 2018

Online first: June 1, 2018

SUMMARY
Introduction/Objective The use of serum prostate-specific antigen (PSA) test has dramatically increased 
the number of men undergoing prostate biopsy. However, the best possible strategies for selecting ap-
propriate patients for prostate biopsy have yet to be defined.
The aim of the study was to develop a classification and regression tree (CART) model that could be used 
to identify patients with significant prostate cancer (PCa) on prostate biopsy in patients referred due to 
abnormal PSA, digital rectal examination (DRE) findings, or both, regardless of the PSA level.
Methods The data on clinicopathological characteristics regarding prebiopsy assessment collected from 
patients who had undergone ultrasound-guided prostate biopsies included the following: age, PSA, DRE, 
volume of the prostate, and PSA density (PSAD). The CART analysis was carried out using all predictors 
identified by univariate logistic regression analysis. Different aspects of predictive performance and 
clinical utility risk prediction model were assessed.
Results In this retrospective study, significant PCa was detected in 92 (41.6%) out of 221 patients. The 
CART model had three splits based on PSAD, as the most decisive variable, prostate volume, DRE, and 
PSA. Our model resulted in an 83.3% area under the receiver operating characteristic curve. Decision 
curve analysis showed that the regression tree provided net benefit for relevant threshold probabilities 
compared with the logistic regression model, PSAD, and the strategy of biopsying all patients.
Conclusion The model helps to reduce unnecessary biopsies without missing significant PCa.
Keywords: prostatic neoplasms; prostate-specific antigen density; decision trees

ORIGINAL ARTICLE / ОРИГИНАЛНИ РАД 

Decision tree analysis for prostate cancer prediction
Miroslav M. Stojadinović1,2, Milorad M. Stojadinović2, Damjan N. Pantić1

1Kragujevac Clinical Centre, Clinic of Urology and Nephrology, Department of Urology, Kragujevac, Serbia;
2University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia

INTRODUCTION 

Prostate cancer (PCa) is the second most fre-
quently diagnosed malignancy and the sixth 
leading cause of cancer-associated mortal-
ity in men worldwide [1]. The use of serum 
prostate-specific antigen (PSA) test dramati-
cally increased the number of men undergoing 
prostate biopsy over the last decades. However, 
PSA and the digital rectal exam (DRE) have 
moderate sensitivity but low specificity for can-
cer diagnosis, potentially causing unnecessary 
treatment complications with prostate biopsy. 
Furthermore, overdiagnosis and overtreatment 
of indolent PCa is a serious health issue in most 
developed countries [2].

Efforts have been made to decrease the num-
ber of unnecessary biopsies. Multiple PSA de-
rivatives have been advanced as early detection 
biomarkers, including age-specific PSA refer-
ence ranges, PSA density (PSAD), PSA velocity, 
transition-zone (TZ) PSAD, percentage of free 
PSA, or the presence of hypoechoic lesions on 
transrectal ultrasound [3–7]. The most advanced 
blood-based PCa biomarkers include [-2]proP-
SA, %p2PSA, Prostate Health Index (PHI), 
4-kallikrein panel or urine-based biomarkers 
such as PCa gene 3 (PCA3) and TMPRSS2:ERG 
(T2:ERG) gene fusions [8, 9, 10]. Numerous 
multivariate models based on the combination 
of various clinical and demographic variables 
expressed by nomograms [7, 11, 12, 13], artifi-
cial neural networks [5, 14], risk calculators [15, 

16, 17] provide better clinical performance than 
the results obtained by individual predictors [5, 
7, 16]. Although they are reported to produce 
useful results, these approaches are still in the 
evaluation phase and they are not used in daily 
clinical practice. Furthermore, only limited re-
ductions in the rate of unnecessary biopsies are 
possible. Therefore, best possible strategies for 
selecting appropriate patients for prostate biopsy 
have yet to be defined.

Classification and regression tree analysis 
(CART) has been applied in urology especially 
for PCa in the prediction of aggressive PCa on 
biopsy [18, 19], or bone scan positivity [20]. 
Chi-squared Automatic Interaction Detector 
(CHAID) is one of the oldest tree classification 
methods. The procedure is a graphic represen-
tation of a series of decision rules and selects a 
useful subset of predictors or classifies subjects 
into high- and low-risk groups. Furthermore, 
the results of the CART analysis are presented 
as a decision tree, which is intuitive and easier 
to understand than the results of many other 
statistical methods.

The aim of the study was to develop and 
compare the predictive accuracy and clinical 
usefulness of classification trees with that of 
the traditional statistical method (logistic re-
gression – LR) and individual most important 
predictor for predicting clinically significant 
PCa on biopsy in patients referred due to ab-
normal PSA, DRE findings, or both, regardless 
of PSA level.
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METHODS

Patient population

This is a retrospective study carried out using the database 
of 239 patients at the Kragujevac Clinical Centre, who had 
undergone ultrasound-guided prostate biopsies, from Sep-
tember 2016 through September 2017. Patient referrals 
were obtained in the course of routine clinical care, regard-
less of prostate-specific antigen level or clinical findings, 
and not as part of a population-based screening trial. After 
obtaining institutional review board approval, the collected 
data on clinicopathological characteristics for each patient 
regarding prebiopsy assessment included the following: 
age, PSA, DRE, prostate volume, PSAD, total number of 
cores taken, Gleason score, and number of positive core 
biopsies. Exclusion criteria were patients with incomplete 
data, and medical therapy known to affect PSA levels. The 
primary outcome was the detection of clinically significant 
PCa on biopsy. Clinically insignificant PCa was defined 
histopathologically according to the Prostate Cancer Re-
search International Active Surveillance (PRIAS) inclu-
sion criteria for low-risk PCa: T1C/T2, PSA ≤ 10 ng/ml, 
PSAD < 0.2 ng/ml/ml, one or two positive biopsy cores, 
and Gleason score ≤ 6 [2].

A member of the urology team performed a DRE on all 
the patients. The DRE was classified as normal or suspi-
cious/positive. At presentation, the serum PSA measurement 
(UniCel DxI 600 Access Immunoassay System; Beckman 
Coulter, Brea, CA, USA) was performed. Before the biop-
sy procedure, all the patients received a cleansing enema 
and prophylactic broad-spectrum antibiotics. A Toshiba 
(Aplio 300; Toshiba, Tokyo, Japan) ultrasound device with 
a 5–10 MHz probe was used to obtain ultrasound data and 
prostate biopsy. All the patients underwent ultrasound-
guided prostate biopsy performed using an 18-gauge biopsy 
instrument (Pro-Mag I 2.5, Md-Tech, Houston, TX, USA). 
A median of 10 biopsy cores were obtained (range: 2–12 
cores), and evaluated per each hospital’s standard procedure 
and by local pathologists. Prostate volumes were obtained by 
measuring the gland in three dimensions, and volume was 
estimated using the following formula: 0.52 [length (cm) 
× width (cm) × height (cm)]. The PSAD was calculated by 
dividing the serum PSA by the calculated prostate volume.

Statistical analyses

Descriptive statistics were used for demographic and base-
line characteristics. Univariate and multivariate LR were 
used to identify and quantify the potential and indepen-
dent predictors of significant PCa with Backward–Wald 
stepwise regression. The results of the regressions were 
expressed in odds ratio with 95% confidence interval. 

CRT classification tree

The CHAID analysis was carried out on the whole sam-
ple using all the predictors identified by the univariate LR 
analysis. We selected the category of significant PCa as the 

category of primary interest in the analysis. For both signifi-
cance value for splitting nodes and merging categories, we 
specified a default significance level of 0.05. The χ2 statistic 
was calculated using the Pearson method. We checked “Al-
low resplitting of merged categories” within a node, which 
allows the procedure to resplit merged categories if that pro-
vides a better solution. We controlled the stopping rules by 
the maximum tree depth of three levels and the minimum 
numbers of cases for nodes by specifying that the parent 
node must have at least 20 cases and a child node at least 
five cases. The optimal number of leaves was determined 
by identifying the tree size that minimized the tree deviance 
when 10-fold cross-validation was used in the derivation 
sample. By comparing the classification rate of the entire 
sample to the cross-validated classification rate, we can as-
sess the generalizability and stability of the classification tree.

Comparison of predictive models

For each model we calculated the area under the receiver 
operating characteristic (ROC) curve (AUC), sensitiv-
ity, specificity, positive (PPV), negative predictive value 
(NPV), accuracy, and calibration for the CHAID model. 
The comparisons of AUC were performed using the meth-
od proposed by DeLong et al. [21].

Clinical usefulness was assessed by using the decision 
curve analyses [22]. These analyses estimate a “net ben-
efit” for prediction models by summing the benefits (true 
positives) and subtracting the harms (false positives). An 
assumption is made that the identification of clinically sig-
nificant PCa would lead to biopsy. Net benefit is plotted 
against threshold probabilities compared with the ‘Biopsy 
for all’ and ‘Biopsy for none’ strategies. The interpretation 
of a decision curve is that the model with the highest net 
benefit should be chosen. We calculated the net benefit 
in Excel using the recommended formula [22]. All other 
analyses were performed using IBM SPSS Statistics, Ver-
sion 23.0 (IBM Corp., Armonk, NY, USA). Statistical sig-
nificance was set at p < 0.05. 

RESULTS

Patients’ characteristics 

A total of 221 patients were analyzed. PCa was detected in 
100 (45.2%) patients, but significant PCa was detected in 
92 (41.6%) patients. Table 1 shows the clinicopathological 
characteristics of patients with/without significant PCa 
included in the study. There were significant differences 
in age, PSA levels, volume of prostate, PSAD, and DRE 
findings between patients with or without significant PCa. 

The logistic regression analysis

In a univariate analysis, all five risk factors displayed sig-
nificant correlation with significant PCa (Table 2). During 
the multivariate analysis, three factors sustained their prog-
nostic significance (Table 2). The analysis demonstrated 
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that the PSA, volume of prostate, and DRE have strong 
prognostic value of significant PCa (Table 2).

CHAID tree

A tree-based CHAID prediction model is shown in Figure 
1. There are nine terminal and five non-terminal nodes, 
resulting from three ‘if–then’ conditions. The most deci-
sive variable at the moment of classification was the PSAD, 
which stratified the patients into four classes in relation to 
the value: ≤ 0.15, 0.15–0.24, 0.24–1.47, and ≥ 1.47 ng/ml/
ml, respectively. Ultimate nodes (nodes 1 and 4) are also 
terminal with low and very high prevalence of significant 
PCa (10.6% and 86.4%, respectively). Node 2, associated 
with PCa in 34.1% of cases, was further split on the basis of 
the prostate volume being less than, equal to, or greater than 
54 ml. Larger prostate was associated with low prevalence 
of PCa (12.5%), compared to smaller (46.4%) ones. Finally, 
the non-terminal node (5) split on the basis of the presence 

of abnormal DRE, with more PCa (83.3%) cases when DRE 
was abnormal. Node 3, associated with PCa in 57.3% of 
the cases, was further split on the basis of the presence of 
abnormal DRE. Abnormal DRE was associated with more 
PCa (79.3%) compared to normal DRE (46.7%). Node 7 
was further split on the basis of the PSA value: ≤ 8.2 ng/ml,  
8.2–11.2 ng/ml, and ≥ 11.2 ng/ml (terminal nodes 11, 12, 
and 13). The misclassification rates of the entire sample 
and of the cross-validated estimate were 21.3% vs. 29%. The 
overall model prediction accuracy of the CHIAD model 
was 78.7%, and it was higher in the absence of significant 
PCa (90.7%) than in the significant PCa group (62%).

Diagnostic performance of PSAD at various cut-off 
values

Since the CHAID analysis indicated that the PSAD was the 
most useful variable in predicting significant PCa, what we 
tried next was to define the optimum cut-off value for PSA 
density. The diagnostic performance of different thresh-
olds for PSAD is shown in Table 3. If the PSAD cut-off 
value was set at 0.15, which has been widely used for PCa 
detection, the sensitivity and specificity would be 92.4% 
and 45.7%, respectively; the number of patients requiring 
biopsy could have been reduced to 155 (30%) from 221, 
with a PCa detection rate of 92.4% (87/92). However, ac-
cording to our analysis, a PSAD of > 0.25 was considered 
optimum because it gave the highest sum of sensitivity 
and specificity.

Predictive performance for each of the modelling strat-
egies and PSAD is reported in Table 3. AUC for all the 
models were shown to have moderate/good discriminatory 
ability (77.8–83.3%) (Figure 2), and in pairwise compari-
son of receiver operating characteristic curves, the differ-
ence between the areas of the CHAID tree and the LR 

Table 1. Baseline patients’ clinicopathological characteristics (n = 221).

Characteristics All BPH/Insignificant PCa (n = 129) Significant PCa (n = 92) p
Age mean ± SD, years 69.8 ± 7.3 68.5 ± 6.9 71.6 ± 7.4 0.002
PSA median (IQR), ng/ml 11.2 (15.1) 9.8 (8.4) 17.8 (42.3) 0.000
Volume prostate median (IQR), ml 49 (32.5) 55 (40) 44 (27) 0.003
PSAD median (IQR), ng/ml/ml 0.24 (0.41) 0.17 (0.23) 0.43 (0.72) 0.000
DRE abnormal n, (%) 53 (24) 14 (10.9) 39 (42.4) 0.000
Number of biopsy cores median (IQR) 10 (0) 10 (0) 10 (0.75) 0.039
GS ≤ 6 n (%) 40 (18.1) 8 (3.6) 32 (14.5) NA
GS = 7 n (%) 25 (11.3) 25 (11.3) NA
GS 8–10 n (%) 35 (15.8) 35 (15.8) NA

PCa – prostate cancer; SD – standard deviation; PSA – prostate-specific antigen; PSAD – prostate-specific antigen density; IQR – interquartile range;  
DRE – digital rectal examination; GS – Gleason score; NA – not applicable

Table 2. The logistic regression analysis of predictors for significant 
prostate cancer

Variables
Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

Age 1.062  
(1.022–1.104) 0.002

PSA 1.025  
(1.012–1.038) 0.000 1.020  

(1.007–1.033) 0.003

Prostate volume 0.988  
(0.978–0.998) 0.024 0.980  

(0.967–0.992) 0.001

PSAD 3.735  
(1.870–7.458) 0.000

DRE 6.044  
(3.026–12.074) 0.000 4.024  

(1.877–8.626) 0.000

PSA – prostate-specific antigen; PSAD – prostate-specific antigen density;  
DRE – digital rectal examination; OR – odds ratio; CI – confidence interval

Table 3. Diagnostic performance of prostate-specific antigen density at diverse cut-off values

PSAD cut-off value TP FN TN FP Sensitivity (%) Specificity (%) Biopsy spread (%) Missed (%)
0.07 92 0 14 115 100 10.85 6 0
0.10 90 2 19 110 97.83 14.73 10 2
0.15 85 7 59 70 92.39 45.74 25 8
0.18 82 10 64 65 89.13 49.61 33 11
0.21 79 13 72 57 85.87 55.81 38 14
> 0.25 69 23 89 40 75 68.99 51 25

PSAD – prostate-specific antigen density; TP – true positive; FN – false negative; TN – true negative; FP – false positive

Stojadinović M. M. et al.
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model (5.3%) and the CHAID tree and the PSAD (5.5%) 
were significant (p = 0.011, and p = 0.002, respectively), 
and between LR and PSAD areas (0.2%) not significant 
(p = 0.931). Graphical assessments of the CHAID model 
calibration are presented in Figure 3. The model was well 
calibrated (R2 = 0.997).

Figure 1. A tree-based Chi-squared Automatic Interaction Detector prediction model

Figure 2. Receiver operating characteristic curves’ analyses
PSAD – prostate-specific antigen density; LR – logistic regression;  
CHAID – Chi-squared Automatic Interaction Detector

Table 4. Predictive performance of classification methods

Efficacy measure
Classification method

PSAD Logistic regression CHAID tree

AUC (95% CI) 77.8  
(71.5–83.1)

78  
(72–83.3)

83.3  
(77.8–88.9)

Sensitivity (95% CI) 33.7  
(24.2–44.3)

50  
(39.4–60.6)

61.9  
(51.2–71.8)

Specificity (95% CI) 93  
(87.2–96.8)

88.4  
(81.5–93.3)

90.7  
(84.3–95.1)

PPV (95% CI) 77.5  
(61.5–89.2)

75.4  
(62.7–85.5)

82.6  
(71.6–90.7)

NPV (95% CI) 66.3  
(58.9–73.1)

71.2  
(63.5–78.1)

76.9  
(69.4–83.4)

Accuracy (95% CI) 68.3  
(61.7–74.4)

72.4  
(66–78.2)

78.7  
(72.7–83.9)

AUC – area under the curve; CI – confidence interval; NPV – negative predic-
tive value; PPV – positive predictive value; PSAD – prostate-specific antigen 
density; CHAID – Chi-squared Automatic Interaction Detector

Decision tree analysis for prostate cancer prediction
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In the decision curve analysis (Figure 4a), both mod-
els predicting significant PCa provided net benefit for 
threshold probabilities of approximately 11% or higher 
as compared with the strategy of biopsying all patients, or 
alternatively, biopsying no one. The CHAID model (red 
line) leads to the higher net benefit compared with the LR 
model (blue line) or the PSAD (green line). The reduction 
in the number of unnecessary biopsies per 100 patients is 
net of false negatives, without a decrease in the number of 
patients with significant PCa who duly have PCa. Also, in 
this case, the CHAID model (red line) outperformed the 
LR model (blue line) or the PSAD (green line) for thresh-
old probabilities above approximately 12% and above 
29% for PSAD (Figure 4b). For example, at a probability 
threshold of 15% and 30%, the use of the model reduces 
the number of unnecessary biopsies by 9 and 23 per 100 
patients, respectively, without missing any significant PCa.

DISCUSSION

In the current study, we used the CART analysis to develop 
a prostate biopsy decision algorithm in patients referred 
due to an abnormal PSA or DRE finding, or both, regard-
less of the PSA level. The CART analysis selected PSAD 
as an indication for further work-up in several subclasses. 
Some common predictors (prostate volume, DRE, PSA) 
may serve in further risk stratification. The CHAID model 
has shown to have good discriminatory ability. It outper-
formed the logistic model and PSAD as an individual 

predictor. Application of the model would lead to notably 
superior clinical outcomes than the current strategy of 
biopsying all men with elevated PSA, and consequently 
resulted in the reduction number of unnecessary biopsies.

Previous existing models have established the criteria 
associated with the higher risk of significant PCa. They 
included age [7, 11, 12, 13, 15, 18, 19, 23], race [15, 23], 
digital rectal examination [7, 11, 12, 13, 15, 16, 17, 23], 
total PSA [5, 12, 13, 15, 16, 17, 19, 23], percentage of free 
PSA [5, 12, 13], PSAD [7, 18, 19], PHI [11], prostate vol-
ume [11, 12, 16–19], PSAD of the TZ [5], TZ volume [5], 
hypoechoic lesions on ultrasound [7, 17,19], biopsy his-
tory [11, 15, 16, 23] and family history [15]. A wide va-
riety of different combinations of predictive factors have 
been identified. In line with previous studies, several of 
those predictors have reached statistical significance in the 
univariate or multivariate analysis or tree-based methods 
in our study. However, many of these parameters did not 
sustain their independent value. Nevertheless, according 
to the analysis, PSAD was the most decisive variable at the 
moment of classification. The PSAD has been suggested 
to differentiate benign from malignant prostate disease 
especially in cases belonging in the grey zone [3]. Although 
there is controversy about the cut-off of PSAD, our result 
showed that western reference (PSAD 0.15) has good sen-
sitivity (92.4%) and only 3% of patients would have been 
missed, and at the same time 30% of unnecessary biopsies 
would have been avoided. In studies with similar design 
that included patients with serum PSA value of ≤ 10 ng/ml,  
PSAD greater or less than 0.158–0.165 was the main split-
ting criterion [18, 24]. However, these results do not sup-
port those of prior investigators such as Catalona et al. 
[6], who reported that the commonly used PSAD cut-off 
of 0.15 detected only 59% of cancers in men with normal 
DRE and PSA value of 4–10 ng/ml. These disparities can 
be explained by different populations and a diverse defin-
ing outcome. According to the findings of a recent study 
in our circumstances, patients with PSAD values above 
0.17 ± 0.06 should be included for biopsy [25].

We found that significant variables constructing the 
CHAID model were different (prostate volume, DRE, PSA) 
according to the PSAD level. In the patients with PSAD  
between 0.15 and 0.24, we demonstrated that prostate vol-
ume was the only useful parameter. It is in concordance 

Figure 3. Calibration in the Chi-squared Automatic Interaction Detec-
tor method (CHAID)

Figure 4. Decision curve analyses
PSAD – prostate-specific antigen density; LR – logistic regression; CHAID – Chi-squared Automatic Interaction Detector

Stojadinović M. M. et al.

DOI: https://doi.org/10.2298/SARH181127039S



  

57

Srp Arh Celok Lek. 2019 Jan-Feb;147(1-2):52-58 www.srpskiarhiv.rs

with many studies that have shown a reduction in PCa risk 
with the increase in prostate size. The DRE is considered 
to be mandatory in the diagnosis and staging of PCa. This 
variable has reached clinical significance in some subclass-
es of our model, similar to other reports [7, 11, 12, 13, 15, 
16, 17, 23]. Overall, this supports that clinical information 
and laboratory tests are not of equal importance for pre-
dicting the probability of a PCa-positive biopsy result at 
various PSA concentrations [24]. According to the PRIAS 
criteria, we found 8% of insignificant PCa, which is not in 
agreement with mathematical models that estimate that 
23–42% of PSA-detected cancers are overdiagnosed [2, 26].

It was found that the accuracy of the present models 
were higher than the accuracy of many earlier ones. Our 
model resulted in an AUC of 83.3%, which is better than 
many others (73–82%) [7, 11, 12, 13, 16, 19], and similar to 
some other reports [9, 17]. However, metrics of accuracy 
do not address the clinical value of a model. Net benefit is a 
tool for evaluating the clinical implications of models [22]. 
However, determining a reasonable range of threshold 
probabilities is a critical aspect of net benefit approaches 
[27]. For PCa screening, a reasonable range of 10–40% was 
defined [22]. According to this criterion, the net benefit 
for the PSAD marker is equal to that for the “biopsy all” 
strategy for threshold probabilities below approximately 
30%. This means that the best clinical outcome would 
be achieved by conducting the biopsy irrespective of the 
PSAD results across relevant threshold probabilities. On 
the other hand, in our decision curve analysis, we identi-
fied the range of threshold probabilities (> 11%) in which 
our models were of value. Furthermore, the decision tree 
is valuable because it defines two subgroups of patients 
who have a very low possibility of being cancer: (a) men 
who have PSAD below 0.15, and (b) men who have PSAD 
0.15–0.24 ng/ml/ml, and prostate volume above 54 ml. In 
comparison with other clinically relevant risk assessment 
algorithms that showed a number of unnecessary biop-
sies, our model outperformed some [18], was comparable 
to some [11], and inferior to others [9, 10]. Our model 
showed excellent calibration but a correction for the mis-
classification might need to be made. 

The limitation of this study resides in its retrospective 
design, in a single tertiary center with a relatively small 
patient cohort that restricted the generalization of the 
rules. Secondly, we included only those variables that 
were available to us. Because others advanced biomarkers 
were not available, we were unable to assess their utility 
in the current model. Furthermore, this analysis is limited 

by the bias introduced by false negative biopsies. Recent 
studies have suggested that extended biopsy schemes and 
MR-targeted biopsies have demonstrated superiority over 
systematic biopsies for the detection of a clinically signifi-
cant disease [28]. Next, the criteria for insignificant PCa 
are not generally accepted. A modern study suggests that 
not all Gleason 3 + 4 patients will have the aggressive form 
of the disease [29]. Finally, determination of prostate vol-
ume by transrectal ultrasound may vary considerably [30]. 
The lack of measurement precision of prostate volume has 
prevented the widespread clinical acceptance of PSAD. 
Nevertheless, to the best of our knowledge, to date, the 
CHAID analysis has not yet been used in the prediction 
of significant PCa in routine clinical settings. Our study 
provides clear evidence that the statistical model could 
be used in everyday clinical practice in order to decrease 
the number of unnecessary biopsies without substantially 
affecting the diagnosis of significant PCa. Furthermore, 
our CART analysis had a very small numbers of splits (7 
splits), unlike others, which can be easily applied in clini-
cal practice [19]. The prediction model represents another 
step towards accurately estimating individualized risk of 
PCa in a patient population lacking optimal prediction 
procedures.

CONCLUSION

In summary, CART analysis chose PSAD for the identi-
fication of patients at minimal risk for a positive biopsy. 
The model showed good discrimination, outperformed the 
LR model, and was the most important individual predic-
tor. Despite favorable global metrics, PSAD has no clinical 
implication across relevant threshold probabilities. This 
prediction model could help avoid unnecessary biopsy 
and reduce overdiagnosis and overtreatment in clinical 
settings. However, before recommending its use in clinical 
practice, a larger and more complete database may be used 
to further clarify the magnitude of the model in terms of 
prediction of significant PCa.
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САЖЕТАК
Увод/Циљ Тестирање на антиген специфичан за проста-
ту (АСП) драматично је повисило број особа код којих се 
изводи биопсија простате. Међутим, оптимална стратегија 
селекцијe болесника за биопсију простате још није дефи-
нисана. Циљ ове студије је креирање модела класифика-
ционог и регресионог стабла одлучивања (КРСО) који би се 
могао користити у предвиђању сигнификантних карцинома 
простате (PCa) током биопсије простате, код болесника са 
абнормалним АСП, дигиторекталним налазом (ДРН), или 
оба, независно од нивоа АСП. 
Методе Прикупљане су следеће клиничкопатолошке ка-
рактеристике болесника код којих је учињена ултразвуком 
вођена транстектална биопсија простате: старост, АСП, ДРН, 
волумен простате и густинa АСП (ГАСП). Анализа КРСО је 
изведена коришћењем свих предиктора идентификованих у 

униваријатној логистичкој регресионој анализи. Процењени 
су различити аспекти перформанси и клиничке корисности 
предикционог модела.
Резултати У овој ретроспективној студији сигнификантни 
PCa су утврђени код 92 (41,6%) од укупно 221 болесника. 
Модел КРСО има три нивоа гранања на основу вреднос-
ти ГАСП, као најпресудније варијабле, волумена простате, 
ДРН и АСП. Наш модел је показао површину испод криве 
од 83,3%. Анализа криве одлучивања је показала да регре-
сионо стабло у релевантном прагу вероватноћа пружа нет-
бенефит у поређењу са логистичким регресионим моделом, 
ГАСП и стратегијом извођења биопсије код свих болесника.
Закључак Модел помаже у смањењу непотребних биопсија 
без пропуштања било којег сигнификантног PCa.
Кључне речи: неоплазме простате; густина антигена спе-
цифичног за простату; стабло одлучивања
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